Introduction to NTRU Public Key Cryptosystem NTRUEncrypt

Hosein Hadipour[†]

May 27, 2021

[†]hsn.hadipour@gmail.com

Outline

- 1. Introduction
- 2. Convolution Polynomial Rings
- 3. Operations of Convolution Polynomial Rings
- 4. Multiplicative Inverse
- 5. NTRUEncrypt
- 6. NTRUEncrypt-Overview
- 7. NTRUEncrypt with SageMath
- 8. Security
- 9. NTRUEncrypt Lattice Reduction with SageMath
- 10. Speed
- 11. Conclusion

NTRU

• NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trū)

0 0 0 0 0

1. Introduction

NTRU

- \circ NTRU: Nth-degree TRUncated polynomial ring (pronounced en-tr $ar{u}$)
- o A public key cryptosystem [HPS98] invented in early 1996 by

Hoffstein

Pipher

Silverman

Ring of Convolution Polynomials

Definition

The ring of convolution polynomials of rank N^1 is the quotient ring

$$R = \frac{\mathbb{Z}[x]}{\langle x^N - 1 \rangle}$$

¹a.k.a. N-th truncated polynomial ring

Ring of Convolution Polynomials

Definition

The ring of convolution polynomials of rank $N^{
m 1}$ is the quotient ring

$$R = \frac{\mathbb{Z}[x]}{\langle x^N - 1 \rangle}$$

Definition

The ring of convolution polynomials modulo \emph{q} of rank \emph{N} is the quotient ring

$$R_q = \frac{\mathbb{Z}_q[x]}{\langle x^N - 1 \rangle}$$

¹a.k.a. N-th truncated polynomial ring

How does the elements of convolution polynomial rings look?

How does the elements of convolution polynomial rings look?

 $\circ\;$ Every element of R or R_q has a unique representation of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1}$$

with the coefficients in \mathbb{Z} or \mathbb{Z}_q , respectively.

How does the elements of convolution polynomial rings look?

 \circ Every element of R or R_q has a unique representation of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1}$$

with the coefficients in \mathbb{Z} or \mathbb{Z}_q , respectively.

 \circ For every term x^k , if $k = r \mod N$, then

$$x^k = x^r$$
.

How does the elements of convolution polynomial rings look?

 \circ Every element of R or R_q has a unique representation of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1}$$

with the coefficients in \mathbb{Z} or \mathbb{Z}_q , respectively.

• For every term x^k , if $k = r \mod N$, then

$$x^k = x^r$$
.

• A polynomial $a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1} \in R$ can also be identified with its vector of coefficients:

$$(a_0, a_1, a_2, \cdots, a_{N-1}) \in \mathbb{Z}^N$$
.

How does the elements of convolution polynomial rings look?

 \circ Every element of R or R_a has a unique representation of the form

$$a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1}$$

with the coefficients in \mathbb{Z} or \mathbb{Z}_q , respectively.

 \circ For every term x^k , if $k = r \mod N$, then

$$x^k = x^r$$
.

• A polynomial $a(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{N-1}x^{N-1} \in R$ can also be identified with its vector of coefficients:

$$(a_0, a_1, a_2, \cdots, a_{N-1}) \in \mathbb{Z}^N$$
.

 \circ Polynomials in R_a can also be uniquely identified in the same way.

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.

 Addition of polynomials correspond to the usual addition of vectors,

$$a(x) + b(x) \leftrightarrow (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots, a_{N-1} + b_{N-1}).$$

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.

 Addition of polynomials correspond to the usual addition of vectors,

$$a(x) + b(x) \leftrightarrow (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots, a_{N-1} + b_{N-1}).$$

- **Multiply** two polynomials mod $x^N 1$, i.e., replace x^k with $x^{k \mod N}$.
- o Polynomial multiplication in R_q can be computed using the same way, except that the coefficients are reduced modulo q.

Example

Example. Let N = 5 and $a(x) = 1 - 2x + 4x^3 - x^4$, and $b(x) = 3 + 4x - 2x^2 + 5x^3 + 2x^4$. Then

$$a(x) \star b(x) = 3 - 2x - 10x^{2} + 21x^{3} + 5x^{4} - 16x^{5} + 22x^{6} + 3x^{7} - 2x^{8}$$

$$= 3 - 2x - 10x^{2} + 21x^{3} + 5x^{4} - 16 + 22x + 3x^{2} - 2x^{3}$$

$$= -13 + 20x - 7x^{2} + 19x^{3} + 5x^{4} \in R = \frac{\mathbb{Z}[x]}{\langle x^{5} - 1 \rangle}.$$

Example

Example. Let N = 5 and $a(x) = 1 - 2x + 4x^3 - x^4$, and $b(x) = 3 + 4x - 2x^2 + 5x^3 + 2x^4$. Then

$$a(x) \star b(x) = 3 - 2x - 10x^{2} + 21x^{3} + 5x^{4} - 16x^{5} + 22x^{6} + 3x^{7} - 2x^{8}$$

$$= 3 - 2x - 10x^{2} + 21x^{3} + 5x^{4} - 16 + 22x + 3x^{2} - 2x^{3}$$

$$= -13 + 20x - 7x^{2} + 19x^{3} + 5x^{4} \in R = \frac{\mathbb{Z}[x]}{\langle x^{5} - 1 \rangle}.$$

If we work instead in the ring R_{11} , then we reduce the coefficients modulo 11:

$$a(x) \star b(x) = 9 + 9x + 4x^2 + 8x^3 + 5x^4 \in R_{11} = \frac{\mathbb{Z}_q[x]}{\langle x^5 - 1 \rangle}.$$

Convolution Polynomial Rings in Sage I

o Generate $R=\frac{\mathbb{Z}[X]}{\langle x^7-1\rangle}$:

N = 7

ZX. $\langle X \rangle$ = PolynomialRing(ZZ)

R. $\langle x \rangle$ = ZX.quotient(X $^$ N - 1); R

Univariate Quotient Polynomial Ring in x over Integer Ring with modulus X $^$ 7 - 1

o Generate $R_3=\frac{\mathbb{Z}_3[X]}{\langle x^7-1 \rangle}$

Convolution Polynomial Rings in Sage II

 \circ Choose two elements at random from R_3 , and multiply them:

```
[f, g] = [Rq.random_element() for _ in range(2)]
print("(f, g) = ", (f, g))
print("f*g = ", f*g)
(f, g) = (2*x^6 + 2*x^4 + x^3, 2*x^6 + x^2 + 2*x)
f*g = 2*x^6 + 2*x^4 + x^3 + 2*x^2 + 2*x + 1
```

$$\circ \text{ Lift } f \in R_3 = \frac{\mathbb{Z}_3[X]}{\langle X^7 - 1 \rangle} \text{ into } \mathbb{Z}_3[X]$$

```
print(f.parent())
Univariate Quotient Polynomial Ring in x over
Ring of integers modulo 3 with modulus X^7 + 2
```

```
f = f.lift()
print(f.parent())
Univariate Polynomial Ring in X over
Ring of integers modulo 3
```

Multiplicative Invesre I

Very few polynomials in R have multiplicative inverse, but the situation is quite different in R_a .

Theorem

Let q be prime. Then $a(x) \in R_q$ has a multiplicative inverse if and only if

$$\gcd(a(x), x^N - 1) = 1 \in \mathbb{Z}_a[x].$$

If so, then the inverse $a(x)^{-1} \in R_q$ can be computed using the extended Eucliden algorithm to find polynomials $u(x), v(x) \in \mathbb{Z}_q[x]$ satisfying

$$a(x)u(x) + (x^N - 1)v(x) = 1.$$

Then $a(x)^{-1} = u(x) \in R_a$.

• What if q is not prime?

Multiplicative Invesre II

You can simply compute the inverse via SageMath[The21] (if it exists!)

```
reset()
N, q = 7, 4
Zx.<X> = ZZ[]
f = X^6 - X^4 + X^3 + X^2 -1
Zq.<a> = PolynomialRing(Zmod(q))
f = Zq(f) # Moving f from Zx[x] into Zq[a]
print("gcd(f, a^N - 1) = ", f.gcd(a^N - 1))
f_inv = f.inverse_mod(a^N - 1); f_inv(a=X)

gcd(f, a^N - 1) = 1
X^5 + 3*X^4 + 3*X^3 + 2*X^2
```

• Check to see if the multiplication of $f \star f^{-1} = 1 \mod q$? $Zq(f*f_inv).mod(a^N - 1)$

NTRUEncrypt

- Three prominent sub-algorithms of NTRUEncrypt:
 - Key-Generation: It produces the private and public keys taking the security parameter 1^n as input
 - Encryption: It takes as input a public key and message from some message space (that may depend on public key), and outputs a ciphertext (it might be a probabilistic)
 - Decryption: A deterministic algorithm takes as input the private key and a ciphertext and outputs a message or a special symbol \perp denoting failure

We need the following notation before describing NTRUEncrypt:

Definition

For any positive integers d_1 and d_2 , the set of ternary polynomials $L(d_1,d_2)$ is defined by:

$$L(d_1, d_2) := \{ a(x) = \sum_{i=1}^{k} c_i x^i \in R | \#\{c_i = 1\} = d_1, \#\{c_i = -1\} = d_2, \\ \#\{c_i = 0\} = k - d_1 - d_2 \}.$$

NTRUEncrypt - Key-Generation

• A trusted party choose public parameters (N, p, q, d) with N and p prime, gcd(p, q) = gcd(N, q) = 1, and q > (6d + 1)p.

0 0 0 0 0

NTRUEncrypt - Key-Generation

- A trusted party choose public parameters (N, p, q, d) with N and p prime, gcd(p, q) = gcd(N, q) = 1, and q > (6d + 1)p.
- o Alice perform the following operation to create her keys:
 - Choose private $f(x) \in L_f = L(d+1,d)$ that is unit (invertible) in R_q and R_p
 - \blacktriangleright Choose private $g(x) \in L_g = L(d, d)$
 - \blacktriangleright Compute f_q , the inverse of f in R_q
 - \blacktriangleright Compute f_p , the inverse of f in R_p
 - Publish the public key $h(x) = pf_n \star g(x)$

0 0 0 0 0

NTRUEncrypt - Key-Generation

- \circ A trusted party choose public parameters (N, p, q, d) with N and p prime, gcd(p,q) = gcd(N,q) = 1, and q > (6d + 1)p.
- Alice perform the following operation to create her keys:
 - Choose private $f(x) \in L_f = L(d+1,d)$ that is unit (invertible) in R_a and R_n
 - \blacktriangleright Choose private $g(x) \in L_g = L(d,d)$
 - \triangleright Compute f_a , the inverse of f in R_a
 - \triangleright Compute f_n , the inverse of f in R_n
 - Publish the public key $h(x) = pf_p \star g(x)$
- Condition q > (6d + 1)p ensures the correctness of decryption algorithm.

o Bob wants to encrypt a message to Alice!

0 0 0 0 0

- Bob wants to encrypt a message to Alice!
- \circ Bob selects plaintext $m \in R_p$

0 0 0 0 0

- o Bob wants to encrypt a message to Alice!
- \circ Bob selects plaintext $m \in R_p$
- \circ He chooses a random $r(x) \in L_r = L(d,d)$

- Bob wants to encrypt a message to Alice!
- $\circ \ \, \mathsf{Bob} \,\, \mathsf{selects} \,\, \mathsf{plaintext} \,\, m \in R_p$
- He chooses a random $r(x) \in L_r = \overline{L(d,d)}$
- He uses Alice's public key h(x) to compute

$$e(x) = r(x) \star h(x) + m(x) \in R_q$$

- Bob wants to encrypt a message to Alice!
- $\circ \ \, \mathsf{Bob} \,\, \mathsf{selects} \,\, \mathsf{plaintext} \,\, m \in R_p$
- He chooses a random $r(x) \in L_r = L(d, d)$
- He uses Alice's public key h(x) to compute

$$e(x) = r(x) \star h(x) + m(x) \in R_q$$

• The ciphertext is the polynomial $e(x) \in R_q$

• Alice receives e(x) from Bob

0 0 0 0

²Coefficients of a(x) are taken in $(-\frac{q}{2}, \frac{q}{2}]$

- \circ Alice receives e(x) from Bob
- Using her private $\overline{\text{key } (f,g)}$ computes

$$a(x) = f(x) \star e(x) = pg(x) \star r(x) + f(x) \star m(x) \in R_q$$

²Coefficients of a(x) are taken in $\left(-\frac{q}{2}, \frac{q}{2}\right]$

- Alice receives e(x) from Bob
- Using her private $\overline{\text{key } (f,g)}$ computes

$$a(x) = f(x) \star e(x) = pg(x) \star r(x) + f(x) \star m(x) \in R_q$$

• Alice center-lifts² a(x) to $a(x) \in R$ and compute

$$m(x) = f_p \star a(x) \in R_p$$

0 0 0 0 0

²Coefficients of a(x) are taken in $\left(-\frac{q}{2}, \frac{q}{2}\right]$

NTRUEncrypt - Overview

Public	parameter	creation

prime, $gcd(p,q) = gcd(N,q) = 1$, and $q > (6d+1)p$.				
Alice	Bob			
Key creation				
Choose private $f \in L(d+1,d)$				
that is invertible in R_q and R_p .				
Choose private $g \in L(d, d)$.				
Compute f_q , the inverse of f in				
R_q .				
Compute f_p , the inverse of f in				
R_p .				
Publish the public key $h = pf_q \star g$.				
Encryption				
	Choose plaintext $m \in R_{-}$			

Choose a random $r \in L(d, d)$. Use Alice's public key h to compute $e = r \star h + m \pmod{q}$. Send ciphertext e to Alice.

 $f \star e = pg \star r + f \star m \pmod{q}.$ Center-lift to $a \in R$ and compute $m = f_p \star a \pmod{p}$.

 $\circ~q$, and p, as well as d have been chosen such s.t.~q > (6d+1)p

- o q, and p, as well as d have been chosen such s.t. q > (6d + 1)p
- ∘ $r(x), g(x) \in L(d, d)$. If in $g(x) \star r(x)$, all of their 1's match up and all of their −1's match up, the largest coefficients of $g(x) \star r(x)$ is 2d.

- q, and p, as well as d have been chosen such s.t. q > (6d + 1)p
- ∘ $r(x), g(x) \in L(d, d)$. If in $g(x) \star r(x)$, all of their 1's match up and all of their −1's match up, the largest coefficients of $g(x) \star r(x)$ is 2d.
- $f(x) \in L(d+1,d)$ and the coefficients of m(x) are in $(-\frac{p}{2},\frac{p}{2}]$. Hence, the largest possible coefficient of $f(x) \star m(x)$ is $(2d+1) \cdot \frac{p}{2}$.

- q, and p, as well as d have been chosen such s.t. q > (6d + 1)p
- ∘ r(x), $g(x) \in L(d,d)$. If in $g(x) \star r(x)$, all of their 1's match up and all of their −1's match up, the largest coefficients of $g(x) \star r(x)$ is 2d.
- $f(x) \in L(d+1,d)$ and the coefficients of m(x) are in $(-\frac{p}{2},\frac{p}{2}]$. Hence, the largest possible coefficient of $f(x) \star m(x)$ is $(2d+1) \cdot \frac{p}{2}$.
- Even if the largest possible coefficient of $g(x) \star r(x)$ happens to coincide with the largest coefficient of $r(x) \star m(x)$, the largest coefficient of $a(x) = pg \star r + f \star m$ is at most

$$p \cdot 2d + (2d + 1) \cdot \frac{p}{2} = \left(3d + \frac{1}{2}\right)p.$$

• Hence, $a(x) = f(x) \star e(x)$ is in R_q by default and moving to R_q (or reducing modulo q) has no effect, and $f_p \star a(x) \in R_p$ is equal to the original plaintext

NTRUEncrypt - SageMath Example I

Compute ciphertext:

```
reset()
N, p, q, d = 7, 3, 41, 2
assert(q > (6*d + 1)*p)
Zx. < x > = ZZ[]
Zp. <s> = PolynomialRing(Zmod(p))
Zq.<t> = PolynomialRing(Zmod(q))
f = x^6 - x^4 + x^3 + x^2 - 1
g = x^6 + x^4 - x^2 - x
fp = Zp(f).inverse_mod(s^N - 1); fp = fp(s=x)
fq = Zq(f).inverse_mod(t^N - 1); fq = fq(t=x)
h = Zq(p*fq*g).mod(t^N - 1)
h = h(t=x)
m = -x^5 + x^3 + x^2 - x + 1
r = x^6 - x^5 + x - 1
e = Zq(h*r + m).mod(t^N - 1); e = e(t=x)
print('ciphertext:\n%s' % e)
ciphertext:
31*x^6 + 19*x^5 + 4*x^4 + 2*x^3 + 40*x^2 + 3*x + 25
```

NTRUEncrypt - SageMath Example II

Recovering the plaintext:

```
a = Zq(f*e).mod(t^N - 1); a = a(t=x)
center_lift = lambda c, p: (ZZ(c)\%p - p) if ZZ(c)\%p > p//2
else ZZ(c)%p
a_coeffs = [center_lift(c, q) for c in \
a.coefficients(sparse=False)]
lifted_a = sum([a_coeffs[i]*x^i for i in \
range(len(a_coeffs))])
b = Zq(fp*lifted_a).mod(t^N - 1); b = b(t=x)
b_coeffs = [center_lift(c, p) for c in \
b.coefficients(sparse=False)]
lifted_b = sum([b_coeffs[i]*x^i for i in \
range(len(b_coeffs))])
print('plaintext:\n%s' % lifted_b)
plaintext:
-x^5 + x^3 + x^2 - x + 1
```

• What is the hard math problem behind NTRU?

0 0 0 0

- What is the hard math problem behind NTRU?
- Lattice reduction
 - ► Same problem that breaks the knapsack!

0 0 0 0 0

- What is the hard math problem behind NTRU?
- Lattice reduction
 - Same problem that breaks the knapsack!
- If attacker can determine f(x) or $f_q(x)$, from h(x), she gets the private key

0 0 0 0 0

- What is the hard math problem behind NTRU?
- Lattice reduction
 - ► Same problem that breaks the knapsack!
- o If attacker can determine f(x) or $f_q(x)$, from h(x), she gets the private key
- Recall $h(x) = p \cdot f_q(x) \star g(x) \mod q$

0 0 0 0 0

20/31

- What is the hard math problem behind NTRU?
- Lattice reduction
 - ► Same problem that breaks the knapsack!
- o If attacker can determine f(x) or $f_q(x)$, from h(x), she gets the private key
- Recall $h(x) = p \cdot f_q(x) \star g(x) \mod q$
- Equivalently, $h(x) \star f(x) = p \cdot g(x) \mod q$

The NTRU Key Recovery Problem[HPSS08]

Given h(x), find **ternary** polynomials f(x) and g(x) satisfying

$$f(x) \star h(x) = p \cdot g(x) \mod q$$

• The solution of NTRU key recovery problem is not unique (why?)

0 0 0 0 0

 Solving NTRU key recovery problem is (almost certainly) equivalent to solving SVP problem in a certain class of lattices.

- Solving NTRU key recovery problem is (almost certainly) equivalent to solving SVP problem in a certain class of lattices.
- Denote $h(x) = h_0 + h_1 x + \dots + h_{N-1} x^{N-1}$

- Solving NTRU key recovery problem is (almost certainly) equivalent to solving SVP problem in a certain class of lattices.
- Denote $h(x) = h_0 + h_1 x + \dots + h_{N-1} x^{N-1}$
- Define

$$\mathbf{H} = \begin{pmatrix} h_0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\ h_1 & h_0 & h_{N-1} & \cdots & h_2 \\ \vdots & & \ddots & & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \end{pmatrix}$$

- Solving NTRU key recovery problem is (almost certainly) equivalent to solving SVP problem in a certain class of lattices.
- Denote $h(x) = h_0 + h_1 x + \dots + h_{N-1} x^{N-1}$
- Define

$$\mathbf{H} = \begin{pmatrix} h_0 & h_{N-1} & h_{N-2} & \cdots & h_1 \\ h_1 & h_0 & h_{N-1} & \cdots & h_2 \\ \vdots & & \ddots & & \vdots \\ h_{N-1} & h_{N-2} & h_{N-3} & \cdots & h_0 \end{pmatrix}$$

• Let **h** be the coefficients of h(x) as a column and similarly for **f** and **g** corresponding to f(x), and g(x), respectively.

00000

NTRUEncrypt as A Lattice Cryptosystem I

o According to the definition of ★, we have

$$\mathbf{Hf} = p\mathbf{g} \mod q$$

Equivalently to block matrix equation

$$M \cdot V = \begin{pmatrix} \mathbf{I}_{N \times N} & \mathbf{0}_{N \times N} \\ \mathbf{H}_{N \times N} & q \mathbf{I}_{N \times N} \end{pmatrix} \begin{pmatrix} \mathbf{f} \\ \mathbf{s} \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ p \mathbf{g} \end{pmatrix} = W \mod q$$

• That is $\mathbf{f} = \mathbf{f}$, and $\mathbf{H}\mathbf{f} + q\mathbf{s} = p\mathbf{g} \mod q$

00000

NTRUEncrypt as A Lattice Cryptosystem II

- \circ Attacker can find private key from V or W
 - \blacktriangleright W is in lattice spanned by columns of M
 - \blacktriangleright W has special form (number of +1's and -1's and 0's)
 - W is a short vector
- Lattice reduction attack
 - ▶ Just like the knapsack?
- But NTRU lattice is hard to break!
 - As far as anybody knows ...

Lattice Reduction Attack Using SageMath I

```
N, p, q = 7, 3, 41
Zx. < X > = ZZ[]
f = X^6 - X^4 + X^3 + X^2 - 1
g = X^6 + X^4 - X^2 - X
h=19*X^6 + 38*X^5 + 6*X^4 + 32*X^3 + 24*X^2 + 37*X + 8
M = matrix(2*N)
for i in [0..N-1]: M[i,i] = 1
for i in [N..2*N-1]: M[i,i] = q
for i in [0..N-1]:
for j in [0..N-1]:
M[i+N,j] = ((Zx(GF(q)(1/p)*h)*X^i)%(X^N-1))[j]
pretty_print(M)
pretty_print(M.transpose().LLL())
pretty_print(f.coefficients(sparse=False))
pretty_print(g.coefficients(sparse=False))
```

Lattice Reduction Attack Using SageMath II

M =	1	0	0	0	0	0	0	0	0	0	0	0	0	0)
	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	30	26	8	38	2	40	20	41	0	0	0	0	0	0
	20	30	26	8	38	2	40	0	41	0	0	0	0	0
	40	20	30	26	8	38	2	0	0	41	0	0	0	0
	2	40	20	30	26	8	38	0	0	0	41	0	0	0
	38	2	40	20	30	26	8	0	0	0	0	41	0	0
	8	38	2	40	20	30	26	0	0	0	0	0	41	0
	26	8	38	2	40	20	30	0	0	0	0	0	0	41

0 0 0 0 0

Lattice Reduction Attack Using SageMath III

After applying LLL algorithm on M:

$$\mathbf{f} = [-1, 0, 1, 1, -1, 0, 1]$$
$$\mathbf{g} = [0, -1, -1, 0, 1, 0, 1]$$

0 0 0 0 0

Known Attacks on NTRUEncrypt

- Lattice reduction
 - Generic attack (like factoring for RSA)
- Meet-in-the-middle
 - Square root of exhaustive search work
 - Inherent due to use of polynomials
- Multiple transmission
 - Encrypt m(x) multiple times with different r(x)
 - Complex padding can prevent it
- Chosen ciphertext
 - Broke earlier version of NTRU

• The most time consuming part of encryption and decryption is the polynomial multiplication

0000

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors

0000

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- \circ A polynomial multiplication of two polynomial of length N requires N^2 multiplications

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- \circ A polynomial multiplication of two polynomial of length N requires N^2 multiplications
- The multiplication required by NTRUEncrypt have the form $r \star h$, $f \star e$, and $f_p \star a$, where r, f, and f_p are ternary polynomials (+1, 0, -1)

0 0 0 0 0

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- \circ A polynomial multiplication of two polynomial of length N requires N^2 multiplications
- The multiplication required by NTRUEncrypt have the form $r \star h$, $f \star e$, and $f_p \star a$, where r, f, and f_p are ternary polynomials (+1, 0, -1)
- o Hence, multiplications can be computed without any multiplications

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- \circ A polynomial multiplication of two polynomial of length N requires N^2 multiplications
- The multiplication required by NTRUEncrypt have the form $r \star h$, $f \star e$, and $f_p \star a$, where r, f, and f_p are ternary polynomials (+1, 0, -1)
- o Hence, multiplications can be computed without any multiplications
- Multiplications require approximately $\frac{2}{3}N^2$ additions and subtractions

- The most time consuming part of encryption and decryption is the polynomial multiplication
- Each coefficient is essentially the dot product of two vectors
- \circ A polynomial multiplication of two polynomial of length N requires N^2 multiplications
- The multiplication required by NTRUEncrypt have the form $r \star h$, $f \star e$, and $f_p \star a$, where r, f, and f_p are ternary polynomials (+1, 0, -1)
- o Hence, multiplications can be computed without any multiplications
- Multiplications require approximately $\frac{2}{3}N^2$ additions and subtractions
- \circ Hence, NTRUEncrypt encryption and decryption take $\mathcal{O}(N^2)$ steps, where each step is extremely fast.

0 0 0 0 0

Conclusion

- A lattice-based public key cryptosystem
- Its security relies on difficulty if SVP problem
- Has evolved since its introduction
- Considered theoretically sound
- Unlike RSA and ECC, NTRU is not known to be vulnerable against quantum computer based attack
- Its open source implementations in Java and C are available
- o It has been standardized (IEEE Std 1363.1, X9.98)

11. Conclusion

Thanks for your attention!

Question?

0 0 0 0

11. Conclusion

References I

- Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman, *Ntru: A ring-based public key cryptosystem*, International Algorithmic Number Theory Symposium, Springer, 1998, pp. 267–288.
- Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H Silverman, *An introduction to mathematical cryptography*, vol. 1, Springer, 2008.
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.2.0), 2021, https://www.sagemath.org.

11. Conclusion