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NTRU
o NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trii)




NTRU

o NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trii)
o A public key cryptosystem [HPS98] invented in early 1996 by
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Ring of Convolution Polynomials

Definition
The ring of convolution polynomials of rank N is the quotient ring
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Definition
The ring of convolution polynomials of rank N is the quotient ring
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Definition
The ring of convolution polynomials modulo g of rank N is the quotient
ring

Z [ x]

e

1a.k.a. N-th truncated polynomial ring




The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
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The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
o Every element of R or R, has a unique representation of the form

1

ag+ax+ a2x2 =P 900 Qp aN_lxN_

with the coefficients in Z or Z,, respectively.

o For every term x*, if k =r mod N, then

=X.

o A polynomial a(x) = ay+ a;x + ay,x> + - + ay_x¥~! € R can also
be identified with its vector of coefficients:

N
(ao, ap, dy, ’aN—l) E X",

o Polynomials in R, can also be uniquely identified in the same way.




Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.

o Addition of polynomials correspond to the usual addition of
vectors,

a(x) + b(x) & (ao + bo, al + bl,az + b2, ,aN_l + bN—l)‘




Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.

o Addition of polynomials correspond to the usual addition of
vectors,

a(x) + b(x) & (ao + bo, al + bl’ 02 + b2, ,aN_l + bN—l)‘

o Multiply two polynomials mod xN — 1, i.e., replace x* with
Xk mod N_

o Polynomial multiplication in R, can be computed using the same
way, except that the coefficients are reduced modulo g.
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= LA L L L D e

R G e o et (e i s [ O H

=3 — 2x — 10x2 + 21x° + 5x* — 16 + 22x + 3x* — 2x°

O

(e




Example

Example. Let N =5 and a(x) = 1 — 2x + 4x® — x*, and
= LA L L L D e
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=3 — 2x — 10x2 + 21x° + 5x* — 16 + 22x + 3x* — 2x°
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If we work instead in the ring R;;, then we reduce the coefficients
modulo 11:
Z,[x]

a(x) % b(x) =9+ 9x + 4x* + 8x° + 5x* € R = G
x —_—




Convolution Polynomial Rings in Sage |

Z[x]

o Generate R = T

W=7

ZX.<X> = PolynomialRing(ZZ)

R.<x> = ZX.quotient(X"N - 1); R

Univariate Quotient Polynomial Ring X over
Integer Ring with modulus X°7 - 1

Z5[x]

Generate R; = 1)

N, gq =7, 3

ZgX .<X> PolynomialRing (Zmod (q))
Rq.<x> = ZqgX.quotient (X"N - 1); Rq
Univariate Quotient Polynomial Ring X over
Ring of integers modulo 3 with modulus X°7 + 2




Convolution Polynomial Rings in Sage Il

o Choose two elements at random from R;, and multiply them:

[f, g] = [Rq.random_element () ! (2)1]

( » (£, g))

« , T*xg)
(f, g) = (2%x°6 + 2*x~4 + x~3, 2%x"6 + x"2 + 2%x)
fxg = 2*xx"6 + 2%x"4 + x~3 + 2*x"2 + 2*x + 1

5 75| X] .
Lif R; = =2 into Z4[X
t fERy 1) to Z5[X]
(f.parent ())
Univariate Quotient Polynomial Ring X over
Ring of integers modulo 3 with modulus X°7 + 2

CARCRECRD SE A (0)

(f.parent ())
Univariate Polynomial Ring X over
Ring of integers modulo 3




Multiplicative Invesre |
Very few polynomials in R have multiplicative inverse, but the situation
is quite different in R,.

Theorem
Let q be prime. Then a(x) € R, has a multiplicative inverse if and only if

ged(a(x),xN —1) =1 € Z,[x].

If so, then the inverse a(x)~! € R, can be computed using the extended
Eucliden algorithm to find polynomials u(x), v(x) € Z,[x] satisfying

a()u(x) + Y = Dox) = 1.
Then a(x)™! = u(x) € R,

o What if g is not prime?




Multiplicative Invesre Il

o You can simply compute the inverse via SageMath[The21] (if it
exists!)

reset ()
Nisae a7 aeas
Zx.<X> = ZzI[]
f = X6 - X°4 + X°3 + X2 -1
Zq.<a> = PolynomialRing (Zmod(q))
= Zq(f) # Moving f from Zx[x] into Zqlal
« , f.gcd(a"N - 1))
f_inv = f.inverse_mod(a"N - 1); f_inv(a=X)

gcd(f, a~N - 1) = 1
X~5 + 3*X"4 + 3%X"3 + 2*%X"2

Check to see if the multiplication of f * f~! =1 mod ¢?

Zq(fxf_inv).mod(a"N - 1)

il




NTRUEncrypt

o Three prominent sub-algorithms of NTRUEncrypt:

P> Key-Generation: It produces the private and public keys taking
the security parameter 1” as input

> Encryption: It takes as input a public key and message from some
message space (that may depend on public key), and outputs a
ciphertext (it might be a probabilistic)
Decryption: A deterministic algorithm takes as input the private
key and a ciphertext and outputs a message or a special symbol L
denoting failure

We need the following notation before describing NTRUEncrypt:

Definition
For any positive integers d; and d,, the set of ternary polynomials
L(d,,d,) is defined by:

k
L(d,dy) := {a(x) =) cx' € R| #{¢; = 1} = d, . #{c; = -1} = d,,
=l
#{c;=0) =k —d, —d,)}.




NTRUEncrypt - Key-Generation

o A trusted party choose public parameters (N, p, g, d) with N and p
prime, ged(p, q) = gcd(N,q) = 1, and ¢ > (6d + 1)p.
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o A trusted party choose public parameters (N, p, g, d) with N and p
prime, ged(p, q) = gcd(N,q) = 1, and ¢ > (6d + 1)p.
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> Compute e the inverse of f in I5
[ 2 Compute i the inverse of f in R,
P> Publish the public key h(x) = pfy * g(x)




NTRUEncrypt - Key-Generation

o A trusted party choose public parameters (N, p, g, d) with N and p
prime, ged(p, q) = gcd(N,q) = 1, and ¢ > (6d + 1)p.
o Alice perform the following operation to create her keys:
P> Choose private f(x) € L, = L(d +1,d) that is unit (invertible) in
R, and R,
P> Choose private g(x) € L,=1L(d,d)

> Compute e the inverse of f in I5
[ 2 Compute i the inverse of f in R,
P> Publish the public key h(x) = pfy * g(x)
o Condition g > (6d + 1)p ensures the correctness of decryption
algorithm.
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o Bob wants to encrypt a message to Alice!




NTRUEncrypt - Encryption

o Bob wants to encrypt a message to Alice!

o Bob selects plaintext m € R,




NTRUEncrypt - Encryption

o Bob wants to encrypt a message to Alice!

o Bob selects plaintext m € R,

o He chooses a random r(x) € L, = L(d, d)
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e(x) = r(x) *x h(x) + m(x) € It




NTRUEncrypt - Encryption

Bob wants to encrypt a message to Alice!
Bob selects plaintext m € R,
He chooses a random r(x) € L, = L(d, d)

He uses Alice's public key A(x) to compute

e(x) = r(x) *x h(x) + m(x) € It

The ciphertext is the polynomial e(x) € R,




NTRUEncrypt - Decryption

o Alice receives e(x) from Bob
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2Coefficients of a(x) are taken in EEHE




NTRUEncrypt - Decryption

o Alice receives e(x) from Bob

o Using her private key (f, g) computes

a(x) = f(x) * e(x) = pg(x) *x r(x) + f(x) * m(x) € R,
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2Coefficients of a(x) are taken in EEHE




NTRUEncrypt - Decryption

o Alice receives e(x) from Bob

o Using her private key (f, g) computes

a(x) = f(x) * e(x) = pg(x) *x r(x) + f(x) * m(x) € R,

o Alice center-lifts? a(x) to a(x) € R and compute

m(x) = f, x a(x) € R,

9 4

2Coefficients of a(x) are taken in EEE
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Key creation

Choose private f € L(d + 1,d)
that is invertible in R, and R),.

Choose private g € L(d, d).

Compute fg, the inverse of f in

R,

Compute f,, the inverse of f in

R

bop
Publish the public key h = pf, * g.

Encryption

Choose plaintext m € R,,.

Choose a random r € L(d, d).

Use Alice’s public key h to
compute e = r x h + m(mod g).

Send ciphertext e to Alice.

Decryption
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NTRUEncrypt - The Correctness of Decryption

o ¢, and p, as well as d have been chosen such s.t. ¢ > (6d + 1)p
o r(x),g(x) € L(d,d). If in g(x) % r(x), all of their 1's match up and

all of their —1's match up, the largest coefficients of g(x) x r(x) is
iDls

o f(x) € L(d + 1,d) and the coefficients of m(x) are in (—g,g !
Hence, the largest possible coefficient of f(x) x m(x) is 2d + 1) - g.




NTRUEncrypt - The Correctness of Decryption

q, and p, as well as d have been chosen such s.t. ¢ > (6d + 1)p
r(x), g(x) € L(d,d). If in g(x) % r(x), all of their 1's match up and
all of their —1's match up, the largest coefficients of g(x) x r(x) is
iDls

f(x) € L(d + 1,d) and the coefficients of m(x) are in (—g, g].
Hence, the largest possible coefficient of f(x) x m(x) is 2d + 1) - g.
Even if the largest possible coefficient of g(x) % r(x) happens to
coincide with the largest coefficient of r(x) x m(x), the largest
coefficient of a(x) = pg x r + f * m is at most

p.2d+(2d+1)-§=<3d+%)p.

Hence, a(x) = f(x) x e(x) is in R, by default and moving to R, (or
reducing modulo g) has no effect, and f, x a(x) € R, is equal to
the original plaintext




NTRUEncrypt - SageMath Example |

o Compute ciphertext:

reset ()
Wy @y @p G 3 Ty Sy &, 2
assert(q > (6%xd + 1)*p)
Zx.<x> = ZZ[]
Zp.<s> = PolynomialRing(Zmod(p))
Zq.<t> = PolynomialRing(Zmod(q))
= 5@ o T A T8 kT =l
X"6 + x74 - x72 - x
= Zp(f).inverse_mod(s"N - 1); fp =
= Zq(f).inverse_mod(t"N - 1); fq
Zq(p*fq*g) .mod(t"N - 1)
h(t=x)
e T R R T BT B Bs it
6 R D SRR SR |
Zq(h*r + m).mod(t"N - 1); e = e(t=x)
( % e)

ciphertext:
31%x"6 + 19*%x~5 + 4%xx~4 + 2*%x~3 + 40*x~2 + 3*%x + 25




NTRUEncrypt - SageMath Example Il

o Recovering the plaintext:

a = Zq(f*e) . mod(t"N - 1); a = a(t=x)
center_lift = €y we ()l = @) ZZ(c)%p > p//2\

2Z(c)%p
a_coeffs = [center_lift(c, q) c
a.coefficients (sparse= )]
lifted_a = ([a_coeffs[il*x"i

« (a_coeffs))1)
b = Zq(fp*lifted_a).mod(t"N - 1); b
b_coeffs = [center_lift(c, p) c
b.coefficients (sparse= )]
lifted_b = ([b_coeffs[il*x"1i

( (b_coeffs))])

( % lifted_b)
plaintext:
T o e A e A P T




The NTRU Key Recovery Problem

o What is the hard math problem behind NTRU?




The NTRU Key Recovery Problem

o What is the hard math problem behind NTRU?
o Lattice reduction
P> Same problem that breaks the knapsack!




The NTRU Key Recovery Problem

o What is the hard math problem behind NTRU?
o Lattice reduction
P> Same problem that breaks the knapsack!

o If attacker can determine f(x) or f,(x), from h(x), she gets the
private key




The NTRU Key Recovery Problem

What is the hard math problem behind NTRU?
Lattice reduction
P> Same problem that breaks the knapsack!

If attacker can determine f(x) or f,(x), from h(x), she gets the
private key

Recall A(x) = p- f,(x) * g(x) mod ¢




The NTRU Key Recovery Problem

What is the hard math problem behind NTRU?
Lattice reduction
P> Same problem that breaks the knapsack!

If attacker can determine f(x) or f,(x), from h(x), she gets the
private key

Recall A(x) = p- f,(x) * g(x) mod ¢

Equivalently, A(x) x f(x) = p- g(x) mod ¢

The NTRU Key Recovery Problem[HPSSO08]

Given h(x), find ternary polynomials f(x) and g(x) satisfying
f(x) x h(x) = p-g(x) mod g

o The solution of NTRU key recovery problem is not unique (why?)




Why NTRU Key Recovery Problem is Hard?

o Solving NTRU key recovery problem is (almost certainly) equivalent
to solving SVP problem in a certain class of lattices.
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Why NTRU Key Recovery Problem is Hard?

o Solving NTRU key recovery problem is (almost certainly) equivalent
to solving SVP problem in a certain class of lattices.

o Denote h(x) = hO aF hlx Gp 000 G hN_lxN_l
o Define

ho hn_i Ay

H= h hy Ay

hN—l hN—2 hN—3




Why NTRU Key Recovery Problem is Hard?

Solving NTRU key recovery problem is (almost certainly) equivalent
to solving SVP problem in a certain class of lattices.

Denote h(x) = hy+ hyx + = + hy_xV=1

Define
bl L e

H= h O

hN—l hN—2 hN—3 hO

Let h be the coefficients of A(x) as a column and similarly for f and
g corresponding to f(x), and g(x), respectively.




NTRUEncrypt as A Lattice Cryptosystem |

o According to the definition of x, we have
Hf = pg mod ¢

o Equivalently to block matrix equation

Hynv  dlvxy S pg

o Thatisf =f, and Hf + ¢gs = pg mod ¢




NTRUEncrypt as A Lattice Cryptosystem Il

o Attacker can find private key from V or W

P> W is in lattice spanned by columns of M
P> W has special form (number of +1's and —1's and 0's)
P W is a short vector

o Lattice reduction attack
P Just like the knapsack?
o But NTRU lattice is hard to break!

P> As far as anybody knows ...




Lattice Reduction Attack Using SageMath |

+ X~2-1
- X
X6 + 38xX"5 + 6*%X~4 + 32xX"3 + 24*X"2 + 37xX + 8
matrix (2*N)
i [0..N-1]: M[i,i] =
i [N..2%xN-1]: M[i,i]
i [0..N-1]:
j [0..N-1]:
M[i+N,j]l = ((Zx(GF(q) (1/p)*h)*X~i)%(X"N-1))[j]
pretty_print (M)
pretty_print (M. transpose ().LLL())
pretty_print (f.coefficients (sparse= )
pretty_print (g.coefficients (sparse= )
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Known Attacks on NTRUEncrypt

Lattice reduction
P> Generic attack (like factoring for RSA)
Meet-in-the-middle
P> Square root of exhaustive search work
P> Inherent due to use of polynomials

Multiple transmission
P> Encrypt m(x) multiple times with different r(x)
Complex padding can prevent it
Chosen ciphertext
P> Broke earlier version of NTRU
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How Fast is NTRUEncrypt?

The most time consuming part of encryption and decryption is the
polynomial multiplication

Each coefficient is essentially the dot product of two vectors

A polynomial multiplication of two polynomial of length N requires
N? multiplications

The multiplication required by NTRUEncrypt have the form r % h,
f xe, and f, x a, where r, f, and f, are ternary polynomials (+1,
i, 1l

Hence, multiplications can be computed without any multiplications

Multiplications require approximately %Nz additions and
subtractions

Hence, NTRUEncrypt encryption and decryption take O(N?) steps,
where each step is extremely fast.




Conclusion

A lattice-based public key cryptosystem
Its security relies on difficulty if SVP problem
Has evolved since its introduction

Considered theoretically sound

Unlike RSA and ECC, NTRU is not known to be vulnerable against
quantum computer based attack

Its open source implementations in Java and C are available
It has been standardized (IEEE Std 1363.1, X9.98)




Thanks for your attention!

Question?
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