
Introduction to NTRU Public Key Cryptosystem
NTRUEncrypt

Hosein Hadipour†

May 27, 2021

†hsn.hadipour@gmail.com

1∕31

Outline

1. Introduction

2. Convolution Polynomial Rings

3. Operations of Convolution Polynomial Rings

4. Multiplicative Inverse

5. NTRUEncrypt

6. NTRUEncrypt-Overview

7. NTRUEncrypt with SageMath

8. Security

9. NTRUEncrypt - Lattice Reduction with SageMath

10. Speed

11. Conclusion

2∕31

NTRU

◦ NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trū)

◦ A public key cryptosystem [HPS98] invented in early 1996 by

Hoffstein Pipher

Silverman

1. Introduction 3∕31

NTRU

◦ NTRU: Nth-degree TRUncated polynomial ring (pronounced en-trū)
◦ A public key cryptosystem [HPS98] invented in early 1996 by

Hoffstein Pipher

Silverman

1. Introduction 3∕31

Ring of Convolution Polynomials

Definition
The ring of convolution polynomials of rank N1 is the quotient ring

R = ℤ[x]
⟨xN − 1⟩

Definition
The ring of convolution polynomials modulo q of rank N is the quotient
ring

Rq =
ℤq[x]

⟨xN − 1⟩

1a.k.a. N-th truncated polynomial ring

2. Convolution Polynomial Rings 4∕31

Ring of Convolution Polynomials

Definition
The ring of convolution polynomials of rank N1 is the quotient ring

R = ℤ[x]
⟨xN − 1⟩

Definition
The ring of convolution polynomials modulo q of rank N is the quotient
ring

Rq =
ℤq[x]

⟨xN − 1⟩

1a.k.a. N-th truncated polynomial ring

2. Convolution Polynomial Rings 4∕31

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?

◦ Every element of R or Rq has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1

with the coefficients in ℤ or ℤq, respectively.
◦ For every term xk, if k = r mod N , then

xk = xr.

◦ A polynomial a(x) = a0 + a1x+ a2x2 +⋯+ aN−1xN−1 ∈ R can also
be identified with its vector of coefficients:

(a0, a1, a2,⋯ , aN−1) ∈ ℤN .

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕31

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
◦ Every element of R or Rq has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1

with the coefficients in ℤ or ℤq, respectively.

◦ For every term xk, if k = r mod N , then

xk = xr.

◦ A polynomial a(x) = a0 + a1x+ a2x2 +⋯+ aN−1xN−1 ∈ R can also
be identified with its vector of coefficients:

(a0, a1, a2,⋯ , aN−1) ∈ ℤN .

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕31

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
◦ Every element of R or Rq has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1

with the coefficients in ℤ or ℤq, respectively.
◦ For every term xk, if k = r mod N , then

xk = xr.

◦ A polynomial a(x) = a0 + a1x+ a2x2 +⋯+ aN−1xN−1 ∈ R can also
be identified with its vector of coefficients:

(a0, a1, a2,⋯ , aN−1) ∈ ℤN .

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕31

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
◦ Every element of R or Rq has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1

with the coefficients in ℤ or ℤq, respectively.
◦ For every term xk, if k = r mod N , then

xk = xr.

◦ A polynomial a(x) = a0 + a1x+ a2x2 +⋯+ aN−1xN−1 ∈ R can also
be identified with its vector of coefficients:

(a0, a1, a2,⋯ , aN−1) ∈ ℤN .

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕31

The Elements of Convolution Polynomial Rings

How does the elements of convolution polynomial rings look?
◦ Every element of R or Rq has a unique representation of the form

a0 + a1x + a2x
2 +⋯ + aN−1x

N−1

with the coefficients in ℤ or ℤq, respectively.
◦ For every term xk, if k = r mod N , then

xk = xr.

◦ A polynomial a(x) = a0 + a1x+ a2x2 +⋯+ aN−1xN−1 ∈ R can also
be identified with its vector of coefficients:

(a0, a1, a2,⋯ , aN−1) ∈ ℤN .

◦ Polynomials in Rq can also be uniquely identified in the same way.

2. Convolution Polynomial Rings 5∕31

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.
◦ Addition of polynomials correspond to the usual addition of

vectors,

a(x) + b(x) ↔ (a0 + b0, a1 + b1, a2 + b2,… , aN−1 + bN−1).

◦ Multiply two polynomials mod xN − 1, i.e., replace xk with
xk mod N .

◦ Polynomial multiplication in Rq can be computed using the same
way, except that the coefficients are reduced modulo q.

3. Operations of Convolution Polynomial Rings 6∕31

Operations of Convolution Polynomial Rings

Every ring has two operations, i.e, addition and multiplication.
◦ Addition of polynomials correspond to the usual addition of

vectors,

a(x) + b(x) ↔ (a0 + b0, a1 + b1, a2 + b2,… , aN−1 + bN−1).

◦ Multiply two polynomials mod xN − 1, i.e., replace xk with
xk mod N .

◦ Polynomial multiplication in Rq can be computed using the same
way, except that the coefficients are reduced modulo q.

3. Operations of Convolution Polynomial Rings 6∕31

Example

Example. Let N = 5 and a(x) = 1 − 2x + 4x3 − x4, and
b(x) = 3 + 4x − 2x2 + 5x3 + 2x4. Then

a(x) ⋆ b(x) =3 − 2x − 10x2 + 21x3 + 5x4 − 16x5 + 22x6 + 3x7 − 2x8

=3 − 2x − 10x2 + 21x3 + 5x4 − 16 + 22x + 3x2 − 2x3

= − 13 + 20x − 7x2 + 19x3 + 5x4 ∈ R = ℤ[x]
⟨x5 − 1⟩

.

If we work instead in the ring R11, then we reduce the coefficients
modulo 11:

a(x) ⋆ b(x) = 9 + 9x + 4x2 + 8x3 + 5x4 ∈ R11 =
ℤq[x]
⟨x5 − 1⟩

.

3. Operations of Convolution Polynomial Rings 7∕31

Example

Example. Let N = 5 and a(x) = 1 − 2x + 4x3 − x4, and
b(x) = 3 + 4x − 2x2 + 5x3 + 2x4. Then

a(x) ⋆ b(x) =3 − 2x − 10x2 + 21x3 + 5x4 − 16x5 + 22x6 + 3x7 − 2x8

=3 − 2x − 10x2 + 21x3 + 5x4 − 16 + 22x + 3x2 − 2x3

= − 13 + 20x − 7x2 + 19x3 + 5x4 ∈ R = ℤ[x]
⟨x5 − 1⟩

.

If we work instead in the ring R11, then we reduce the coefficients
modulo 11:

a(x) ⋆ b(x) = 9 + 9x + 4x2 + 8x3 + 5x4 ∈ R11 =
ℤq[x]
⟨x5 − 1⟩

.

3. Operations of Convolution Polynomial Rings 7∕31

Convolution Polynomial Rings in Sage I

◦ Generate R = ℤ[x]
⟨x7−1⟩ :

N = 7
ZX.<X> = PolynomialRing(ZZ)
R.<x> = ZX.quotient(X^N - 1); R
Univariate Quotient Polynomial Ring in x over
Integer Ring with modulus X^7 - 1

◦ Generate R3 =
ℤ3[x]
⟨x7−1⟩

N, q = 7, 3
ZqX.<X> = PolynomialRing(Zmod(q))
Rq.<x> = ZqX.quotient(X^N - 1); Rq
Univariate Quotient Polynomial Ring in x over
Ring of integers modulo 3 with modulus X^7 + 2

3. Operations of Convolution Polynomial Rings 8∕31

Convolution Polynomial Rings in Sage II

◦ Choose two elements at random from R3, and multiply them:
[f, g] = [Rq.random_element () for _ in range (2)]
print("(f, g) = ", (f, g))
print("f*g = ", f*g)
(f, g) = (2*x^6 + 2*x^4 + x^3, 2*x^6 + x^2 + 2*x)
f*g = 2*x^6 + 2*x^4 + x^3 + 2*x^2 + 2*x + 1

◦ Lift f ∈ R3 =
ℤ3[X]
⟨X7−1⟩

into ℤ3[X]

print(f.parent ())
Univariate Quotient Polynomial Ring in x over
Ring of integers modulo 3 with modulus X^7 + 2

f = f.lift()
print(f.parent ())
Univariate Polynomial Ring in X over
Ring of integers modulo 3

3. Operations of Convolution Polynomial Rings 9∕31

Multiplicative Invesre I

Very few polynomials in R have multiplicative inverse, but the situation
is quite different in Rq.

Theorem
Let q be prime. Then a(x) ∈ Rq has a multiplicative inverse if and only if

gcd(a(x), xN − 1) = 1 ∈ ℤq[x].

If so, then the inverse a(x)−1 ∈ Rq can be computed using the extended
Eucliden algorithm to find polynomials u(x), v(x) ∈ ℤq[x] satisfying

a(x)u(x) + (xN − 1)v(x) = 1.

Then a(x)−1 = u(x) ∈ Rq.

◦ What if q is not prime?

4. Multiplicative Inverse 10∕31

Multiplicative Invesre II

◦ You can simply compute the inverse via SageMath[The21] (if it
exists!)
reset()
N, q = 7, 4
Zx.<X> = ZZ[]
f = X^6 - X^4 + X^3 + X^2 -1
Zq.<a> = PolynomialRing(Zmod(q))
f = Zq(f) # Moving f from Zx[x] into Zq[a]
print("gcd(f, a^N - 1) = ", f.gcd(a^N - 1))
f_inv = f.inverse_mod(a^N - 1); f_inv(a=X)

gcd(f, a^N - 1) = 1
X^5 + 3*X^4 + 3*X^3 + 2*X^2

◦ Check to see if the multiplication of f ⋆ f−1 = 1 mod q?
Zq(f*f_inv).mod(a^N - 1)

1

4. Multiplicative Inverse 11∕31

NTRUEncrypt

◦ Three prominent sub-algorithms of NTRUEncrypt:
▶ Key-Generation: It produces the private and public keys taking

the security parameter 1n as input
▶ Encryption: It takes as input a public key and message from some

message space (that may depend on public key), and outputs a
ciphertext (it might be a probabilistic)

▶ Decryption: A deterministic algorithm takes as input the private
key and a ciphertext and outputs a message or a special symbol ⊥
denoting failure

We need the following notation before describing NTRUEncrypt:

Definition
For any positive integers d1 and d2, the set of ternary polynomials
L(d1, d2) is defined by:

L(d1, d2) ∶= {a(x) =
k
∑

i=1
cix

i ∈ R| #{ci = 1} = d1, #{ci = −1} = d2,

#{ci = 0} = k − d1 − d2}.
5. NTRUEncrypt 12∕31

NTRUEncrypt - Key-Generation

◦ A trusted party choose public parameters (N, p, q, d) with N and p
prime, gcd(p, q) = gcd(N, q) = 1, and q > (6d + 1)p.

◦ Alice perform the following operation to create her keys:
▶ Choose private f (x) ∈ Lf = L(d + 1, d) that is unit (invertible) in

Rq and Rp
▶ Choose private g(x) ∈ Lg = L(d, d)
▶ Compute fq, the inverse of f in Rq
▶ Compute fp, the inverse of f in Rp
▶ Publish the public key ℎ(x) = pfp ⋆ g(x)

◦ Condition q > (6d + 1)p ensures the correctness of decryption
algorithm.

5. NTRUEncrypt 13∕31

NTRUEncrypt - Key-Generation

◦ A trusted party choose public parameters (N, p, q, d) with N and p
prime, gcd(p, q) = gcd(N, q) = 1, and q > (6d + 1)p.

◦ Alice perform the following operation to create her keys:
▶ Choose private f (x) ∈ Lf = L(d + 1, d) that is unit (invertible) in

Rq and Rp
▶ Choose private g(x) ∈ Lg = L(d, d)
▶ Compute fq, the inverse of f in Rq
▶ Compute fp, the inverse of f in Rp
▶ Publish the public key ℎ(x) = pfp ⋆ g(x)

◦ Condition q > (6d + 1)p ensures the correctness of decryption
algorithm.

5. NTRUEncrypt 13∕31

NTRUEncrypt - Key-Generation

◦ A trusted party choose public parameters (N, p, q, d) with N and p
prime, gcd(p, q) = gcd(N, q) = 1, and q > (6d + 1)p.

◦ Alice perform the following operation to create her keys:
▶ Choose private f (x) ∈ Lf = L(d + 1, d) that is unit (invertible) in

Rq and Rp
▶ Choose private g(x) ∈ Lg = L(d, d)
▶ Compute fq, the inverse of f in Rq
▶ Compute fp, the inverse of f in Rp
▶ Publish the public key ℎ(x) = pfp ⋆ g(x)

◦ Condition q > (6d + 1)p ensures the correctness of decryption
algorithm.

5. NTRUEncrypt 13∕31

NTRUEncrypt - Encryption

◦ Bob wants to encrypt a message to Alice!

◦ Bob selects plaintext m ∈ Rp

◦ He chooses a random r(x) ∈ Lr = L(d, d)
◦ He uses Alice’s public key ℎ(x) to compute

e(x) = r(x) ⋆ ℎ(x) + m(x) ∈ Rq

◦ The ciphertext is the polynomial e(x) ∈ Rq

5. NTRUEncrypt 14∕31

NTRUEncrypt - Encryption

◦ Bob wants to encrypt a message to Alice!
◦ Bob selects plaintext m ∈ Rp

◦ He chooses a random r(x) ∈ Lr = L(d, d)
◦ He uses Alice’s public key ℎ(x) to compute

e(x) = r(x) ⋆ ℎ(x) + m(x) ∈ Rq

◦ The ciphertext is the polynomial e(x) ∈ Rq

5. NTRUEncrypt 14∕31

NTRUEncrypt - Encryption

◦ Bob wants to encrypt a message to Alice!
◦ Bob selects plaintext m ∈ Rp

◦ He chooses a random r(x) ∈ Lr = L(d, d)

◦ He uses Alice’s public key ℎ(x) to compute

e(x) = r(x) ⋆ ℎ(x) + m(x) ∈ Rq

◦ The ciphertext is the polynomial e(x) ∈ Rq

5. NTRUEncrypt 14∕31

NTRUEncrypt - Encryption

◦ Bob wants to encrypt a message to Alice!
◦ Bob selects plaintext m ∈ Rp

◦ He chooses a random r(x) ∈ Lr = L(d, d)
◦ He uses Alice’s public key ℎ(x) to compute

e(x) = r(x) ⋆ ℎ(x) + m(x) ∈ Rq

◦ The ciphertext is the polynomial e(x) ∈ Rq

5. NTRUEncrypt 14∕31

NTRUEncrypt - Encryption

◦ Bob wants to encrypt a message to Alice!
◦ Bob selects plaintext m ∈ Rp

◦ He chooses a random r(x) ∈ Lr = L(d, d)
◦ He uses Alice’s public key ℎ(x) to compute

e(x) = r(x) ⋆ ℎ(x) + m(x) ∈ Rq

◦ The ciphertext is the polynomial e(x) ∈ Rq

5. NTRUEncrypt 14∕31

NTRUEncrypt - Decryption

◦ Alice receives e(x) from Bob

◦ Using her private key (f, g) computes

a(x) = f (x) ⋆ e(x) = pg(x) ⋆ r(x) + f (x) ⋆ m(x) ∈ Rq

◦ Alice center-lifts2 a(x) to a(x) ∈ R and compute

m(x) = fp ⋆ a(x) ∈ Rp

2Coefficients of a(x) are taken in (− q
2
, q
2
]

5. NTRUEncrypt 15∕31

NTRUEncrypt - Decryption

◦ Alice receives e(x) from Bob
◦ Using her private key (f, g) computes

a(x) = f (x) ⋆ e(x) = pg(x) ⋆ r(x) + f (x) ⋆ m(x) ∈ Rq

◦ Alice center-lifts2 a(x) to a(x) ∈ R and compute

m(x) = fp ⋆ a(x) ∈ Rp

2Coefficients of a(x) are taken in (− q
2
, q
2
]

5. NTRUEncrypt 15∕31

NTRUEncrypt - Decryption

◦ Alice receives e(x) from Bob
◦ Using her private key (f, g) computes

a(x) = f (x) ⋆ e(x) = pg(x) ⋆ r(x) + f (x) ⋆ m(x) ∈ Rq

◦ Alice center-lifts2 a(x) to a(x) ∈ R and compute

m(x) = fp ⋆ a(x) ∈ Rp

2Coefficients of a(x) are taken in (− q
2
, q
2
]

5. NTRUEncrypt 15∕31

NTRUEncrypt - Overview

6. NTRUEncrypt-Overview 16∕31

NTRUEncrypt - The Correctness of Decryption

◦ q, and p, as well as d have been chosen such s.t. q > (6d + 1)p

◦ r(x), g(x) ∈ L(d, d). If in g(x) ⋆ r(x), all of their 1’s match up and
all of their −1’s match up, the largest coefficients of g(x) ⋆ r(x) is
2d.

◦ f (x) ∈ L(d + 1, d) and the coefficients of m(x) are in (− p
2 ,

p
2].

Hence, the largest possible coefficient of f (x) ⋆ m(x) is (2d + 1) ⋅ p2 .
◦ Even if the largest possible coefficient of g(x) ⋆ r(x) happens to

coincide with the largest coefficient of r(x) ⋆ m(x), the largest
coefficient of a(x) = pg ⋆ r + f ⋆ m is at most

p ⋅ 2d + (2d + 1) ⋅
p
2
=
(

3d + 1
2

)

p.

◦ Hence, a(x) = f (x) ⋆ e(x) is in Rq by default and moving to Rq (or
reducing modulo q) has no effect, and fp ⋆ a(x) ∈ Rp is equal to
the original plaintext

6. NTRUEncrypt-Overview 17∕31

NTRUEncrypt - The Correctness of Decryption

◦ q, and p, as well as d have been chosen such s.t. q > (6d + 1)p
◦ r(x), g(x) ∈ L(d, d). If in g(x) ⋆ r(x), all of their 1’s match up and

all of their −1’s match up, the largest coefficients of g(x) ⋆ r(x) is
2d.

◦ f (x) ∈ L(d + 1, d) and the coefficients of m(x) are in (− p
2 ,

p
2].

Hence, the largest possible coefficient of f (x) ⋆ m(x) is (2d + 1) ⋅ p2 .
◦ Even if the largest possible coefficient of g(x) ⋆ r(x) happens to

coincide with the largest coefficient of r(x) ⋆ m(x), the largest
coefficient of a(x) = pg ⋆ r + f ⋆ m is at most

p ⋅ 2d + (2d + 1) ⋅
p
2
=
(

3d + 1
2

)

p.

◦ Hence, a(x) = f (x) ⋆ e(x) is in Rq by default and moving to Rq (or
reducing modulo q) has no effect, and fp ⋆ a(x) ∈ Rp is equal to
the original plaintext

6. NTRUEncrypt-Overview 17∕31

NTRUEncrypt - The Correctness of Decryption

◦ q, and p, as well as d have been chosen such s.t. q > (6d + 1)p
◦ r(x), g(x) ∈ L(d, d). If in g(x) ⋆ r(x), all of their 1’s match up and

all of their −1’s match up, the largest coefficients of g(x) ⋆ r(x) is
2d.

◦ f (x) ∈ L(d + 1, d) and the coefficients of m(x) are in (− p
2 ,

p
2].

Hence, the largest possible coefficient of f (x) ⋆ m(x) is (2d + 1) ⋅ p2 .

◦ Even if the largest possible coefficient of g(x) ⋆ r(x) happens to
coincide with the largest coefficient of r(x) ⋆ m(x), the largest
coefficient of a(x) = pg ⋆ r + f ⋆ m is at most

p ⋅ 2d + (2d + 1) ⋅
p
2
=
(

3d + 1
2

)

p.

◦ Hence, a(x) = f (x) ⋆ e(x) is in Rq by default and moving to Rq (or
reducing modulo q) has no effect, and fp ⋆ a(x) ∈ Rp is equal to
the original plaintext

6. NTRUEncrypt-Overview 17∕31

NTRUEncrypt - The Correctness of Decryption

◦ q, and p, as well as d have been chosen such s.t. q > (6d + 1)p
◦ r(x), g(x) ∈ L(d, d). If in g(x) ⋆ r(x), all of their 1’s match up and

all of their −1’s match up, the largest coefficients of g(x) ⋆ r(x) is
2d.

◦ f (x) ∈ L(d + 1, d) and the coefficients of m(x) are in (− p
2 ,

p
2].

Hence, the largest possible coefficient of f (x) ⋆ m(x) is (2d + 1) ⋅ p2 .
◦ Even if the largest possible coefficient of g(x) ⋆ r(x) happens to

coincide with the largest coefficient of r(x) ⋆ m(x), the largest
coefficient of a(x) = pg ⋆ r + f ⋆ m is at most

p ⋅ 2d + (2d + 1) ⋅
p
2
=
(

3d + 1
2

)

p.

◦ Hence, a(x) = f (x) ⋆ e(x) is in Rq by default and moving to Rq (or
reducing modulo q) has no effect, and fp ⋆ a(x) ∈ Rp is equal to
the original plaintext

6. NTRUEncrypt-Overview 17∕31

NTRUEncrypt - SageMath Example I

◦ Compute ciphertext:
reset()
N, p, q, d = 7, 3, 41, 2
assert(q > (6*d + 1)*p)
Zx.<x> = ZZ[]
Zp.<s> = PolynomialRing(Zmod(p))
Zq.<t> = PolynomialRing(Zmod(q))
f = x^6 - x^4 + x^3 + x^2 - 1
g = x^6 + x^4 - x^2 - x
fp = Zp(f). inverse_mod(s^N - 1); fp = fp(s=x)
fq = Zq(f). inverse_mod(t^N - 1); fq = fq(t=x)
h = Zq(p*fq*g).mod(t^N - 1)
h = h(t=x)
m = -x^5 + x^3 + x^2 - x + 1
r = x^6 - x^5 + x - 1
e = Zq(h*r + m).mod(t^N - 1); e = e(t=x)
print(’ciphertext :\n%s’ % e)

ciphertext:
31*x^6 + 19*x^5 + 4*x^4 + 2*x^3 + 40*x^2 + 3*x + 25

7. NTRUEncrypt with SageMath 18∕31

NTRUEncrypt - SageMath Example II

◦ Recovering the plaintext:
a = Zq(f*e).mod(t^N - 1); a = a(t=x)
center_lift = lambda c, p: (ZZ(c)%p - p) if ZZ(c)%p > p//2\
else ZZ(c)%p
a_coeffs = [center_lift(c, q) for c in \
a.coefficients(sparse=False)]
lifted_a = sum([a_coeffs[i]*x^i for i in \
range(len(a_coeffs))])
b = Zq(fp*lifted_a).mod(t^N - 1); b = b(t=x)
b_coeffs = [center_lift(c, p) for c in \
b.coefficients(sparse=False)]
lifted_b = sum([b_coeffs[i]*x^i for i in \
range(len(b_coeffs))])
print(’plaintext :\n%s’ % lifted_b)
plaintext:
-x^5 + x^3 + x^2 - x + 1

7. NTRUEncrypt with SageMath 19∕31

The NTRU Key Recovery Problem

◦ What is the hard math problem behind NTRU?

◦ Lattice reduction
▶ Same problem that breaks the knapsack!

◦ If attacker can determine f (x) or fq(x), from ℎ(x), she gets the
private key

◦ Recall ℎ(x) = p ⋅ fq(x) ⋆ g(x) mod q
◦ Equivalently, ℎ(x) ⋆ f (x) = p ⋅ g(x) mod q

The NTRU Key Recovery Problem[HPSS08]
Given ℎ(x), find ternary polynomials f (x) and g(x) satisfying
f (x) ⋆ ℎ(x) = p ⋅ g(x) mod q

◦ The solution of NTRU key recovery problem is not unique (why?)

8. Security 20∕31

The NTRU Key Recovery Problem

◦ What is the hard math problem behind NTRU?
◦ Lattice reduction

▶ Same problem that breaks the knapsack!

◦ If attacker can determine f (x) or fq(x), from ℎ(x), she gets the
private key

◦ Recall ℎ(x) = p ⋅ fq(x) ⋆ g(x) mod q
◦ Equivalently, ℎ(x) ⋆ f (x) = p ⋅ g(x) mod q

The NTRU Key Recovery Problem[HPSS08]
Given ℎ(x), find ternary polynomials f (x) and g(x) satisfying
f (x) ⋆ ℎ(x) = p ⋅ g(x) mod q

◦ The solution of NTRU key recovery problem is not unique (why?)

8. Security 20∕31

The NTRU Key Recovery Problem

◦ What is the hard math problem behind NTRU?
◦ Lattice reduction

▶ Same problem that breaks the knapsack!

◦ If attacker can determine f (x) or fq(x), from ℎ(x), she gets the
private key

◦ Recall ℎ(x) = p ⋅ fq(x) ⋆ g(x) mod q
◦ Equivalently, ℎ(x) ⋆ f (x) = p ⋅ g(x) mod q

The NTRU Key Recovery Problem[HPSS08]
Given ℎ(x), find ternary polynomials f (x) and g(x) satisfying
f (x) ⋆ ℎ(x) = p ⋅ g(x) mod q

◦ The solution of NTRU key recovery problem is not unique (why?)

8. Security 20∕31

The NTRU Key Recovery Problem

◦ What is the hard math problem behind NTRU?
◦ Lattice reduction

▶ Same problem that breaks the knapsack!

◦ If attacker can determine f (x) or fq(x), from ℎ(x), she gets the
private key

◦ Recall ℎ(x) = p ⋅ fq(x) ⋆ g(x) mod q

◦ Equivalently, ℎ(x) ⋆ f (x) = p ⋅ g(x) mod q

The NTRU Key Recovery Problem[HPSS08]
Given ℎ(x), find ternary polynomials f (x) and g(x) satisfying
f (x) ⋆ ℎ(x) = p ⋅ g(x) mod q

◦ The solution of NTRU key recovery problem is not unique (why?)

8. Security 20∕31

The NTRU Key Recovery Problem

◦ What is the hard math problem behind NTRU?
◦ Lattice reduction

▶ Same problem that breaks the knapsack!

◦ If attacker can determine f (x) or fq(x), from ℎ(x), she gets the
private key

◦ Recall ℎ(x) = p ⋅ fq(x) ⋆ g(x) mod q
◦ Equivalently, ℎ(x) ⋆ f (x) = p ⋅ g(x) mod q

The NTRU Key Recovery Problem[HPSS08]
Given ℎ(x), find ternary polynomials f (x) and g(x) satisfying
f (x) ⋆ ℎ(x) = p ⋅ g(x) mod q

◦ The solution of NTRU key recovery problem is not unique (why?)

8. Security 20∕31

Why NTRU Key Recovery Problem is Hard?

◦ Solving NTRU key recovery problem is (almost certainly) equivalent
to solving SVP problem in a certain class of lattices.

◦ Denote ℎ(x) = ℎ0 + ℎ1x +⋯ + ℎN−1xN−1

◦ Define

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

◦ Let h be the coefficients of ℎ(x) as a column and similarly for f and
g corresponding to f (x), and g(x), respectively.

8. Security 21∕31

Why NTRU Key Recovery Problem is Hard?

◦ Solving NTRU key recovery problem is (almost certainly) equivalent
to solving SVP problem in a certain class of lattices.

◦ Denote ℎ(x) = ℎ0 + ℎ1x +⋯ + ℎN−1xN−1

◦ Define

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

◦ Let h be the coefficients of ℎ(x) as a column and similarly for f and
g corresponding to f (x), and g(x), respectively.

8. Security 21∕31

Why NTRU Key Recovery Problem is Hard?

◦ Solving NTRU key recovery problem is (almost certainly) equivalent
to solving SVP problem in a certain class of lattices.

◦ Denote ℎ(x) = ℎ0 + ℎ1x +⋯ + ℎN−1xN−1

◦ Define

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

◦ Let h be the coefficients of ℎ(x) as a column and similarly for f and
g corresponding to f (x), and g(x), respectively.

8. Security 21∕31

Why NTRU Key Recovery Problem is Hard?

◦ Solving NTRU key recovery problem is (almost certainly) equivalent
to solving SVP problem in a certain class of lattices.

◦ Denote ℎ(x) = ℎ0 + ℎ1x +⋯ + ℎN−1xN−1

◦ Define

H =

⎛

⎜

⎜

⎜

⎝

ℎ0 ℎN−1 ℎN−2 ⋯ ℎ1
ℎ1 ℎ0 ℎN−1 ⋯ ℎ2
⋮ ⋱ ⋮

ℎN−1 ℎN−2 ℎN−3 ⋯ ℎ0

⎞

⎟

⎟

⎟

⎠

◦ Let h be the coefficients of ℎ(x) as a column and similarly for f and
g corresponding to f (x), and g(x), respectively.

8. Security 21∕31

NTRUEncrypt as A Lattice Cryptosystem I

◦ According to the definition of ⋆, we have

Hf = pg mod q

◦ Equivalently to block matrix equation

M ⋅ V =
(

IN×N 0N×N
HN×N qIN×N

)(

f
s

)

=
(

f
pg

)

= W mod q

◦ That is f = f , and Hf + qs = pg mod q

8. Security 22∕31

NTRUEncrypt as A Lattice Cryptosystem II

◦ Attacker can find private key from V or W
▶ W is in lattice spanned by columns of M
▶ W has special form (number of +1’s and −1’s and 0’s)
▶ W is a short vector

◦ Lattice reduction attack
▶ Just like the knapsack?

◦ But NTRU lattice is hard to break!
▶ As far as anybody knows …

8. Security 23∕31

Lattice Reduction Attack Using SageMath I

N, p, q = 7, 3, 41
Zx.<X> = ZZ[]
f=X^6 - X^4 + X^3 + X^2-1
g=X^6 + X^4 - X^2 - X
h=19*X^6 + 38*X^5 + 6*X^4 + 32*X^3 + 24*X^2 + 37*X + 8
M = matrix (2*N)
for i in [0..N-1]: M[i,i] = 1
for i in [N..2*N-1]: M[i,i] = q
for i in [0..N-1]:
for j in [0..N-1]:
M[i+N,j] = ((Zx(GF(q)(1/p)*h)*X^i)%(X^N-1))[j]
pretty_print(M)
pretty_print(M.transpose ().LLL())
pretty_print(f.coefficients(sparse=False))
pretty_print(g.coefficients(sparse=False))

9. NTRUEncrypt - Lattice Reduction with SageMath 24∕31

Lattice Reduction Attack Using SageMath II

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0

30 26 8 38 2 40 20 41 0 0 0 0 0 0
20 30 26 8 38 2 40 0 41 0 0 0 0 0
40 20 30 26 8 38 2 0 0 41 0 0 0 0
2 40 20 30 26 8 38 0 0 0 41 0 0 0

38 2 40 20 30 26 8 0 0 0 0 41 0 0
8 38 2 40 20 30 26 0 0 0 0 0 41 0

26 8 38 2 40 20 30 0 0 0 0 0 0 41

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

9. NTRUEncrypt - Lattice Reduction with SageMath 25∕31

Lattice Reduction Attack Using SageMath III
After applying LLL algorithm on M :

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0
−1 0 1 −1 −1 0 1 −1 0 −1 0 1 1 0
1 −1 −1 0 1 −1 0 −1 0 1 1 0 −1 0
0 1 0 1 −1 0 1 0 −1 −1 0 0 2 0
0 1 −1 0 1 −1 −1 1 0 −1 0 −1 0 1
1 −2 0 0 0 −1 −1 0 0 1 −1 0 −1 1
1 0 1 −1 0 1 0 −1 −1 0 0 2 0 0

−10 −1 0 0 8 1 −1 −3 −5 8 −5 −1 5 1
1 −2 −9 0 0 −1 9 5 2 −3 −6 7 −5 0
0 0 8 1 −1 −10 −1 8 −5 −1 5 1 −3 −5

−1 9 1 −2 −9 0 0 −5 0 5 2 −3 −6 7
9 1 −2 −9 0 0 −1 0 5 2 −3 −6 7 −5

−1 0 0 8 1 −1 −10 −5 8 −5 −1 5 1 −3
−3 −1 6 −2 6 −2 −2 −6 −11 −3 −4 −9 1 −9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

f = [−1, 0, 1, 1,−1, 0, 1]
g = [0,−1,−1, 0, 1, 0, 1]

9. NTRUEncrypt - Lattice Reduction with SageMath 26∕31

Known Attacks on NTRUEncrypt

◦ Lattice reduction
▶ Generic attack (like factoring for RSA)

◦ Meet-in-the-middle
▶ Square root of exhaustive search work
▶ Inherent due to use of polynomials

◦ Multiple transmission
▶ Encrypt m(x) multiple times with different r(x)
▶ Complex padding can prevent it

◦ Chosen ciphertext
▶ Broke earlier version of NTRU

9. NTRUEncrypt - Lattice Reduction with SageMath 27∕31

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ The multiplication required by NTRUEncrypt have the form r ⋆ ℎ,

f ⋆ e, and fp ⋆ a, where r, f , and fp are ternary polynomials (+1,
0, −1)

◦ Hence, multiplications can be computed without any multiplications
◦ Multiplications require approximately 2

3
N2 additions and

subtractions
◦ Hence, NTRUEncrypt encryption and decryption take (N2) steps,

where each step is extremely fast.

10. Speed 28∕31

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors

◦ A polynomial multiplication of two polynomial of length N requires
N2 multiplications

◦ The multiplication required by NTRUEncrypt have the form r ⋆ ℎ,
f ⋆ e, and fp ⋆ a, where r, f , and fp are ternary polynomials (+1,
0, −1)

◦ Hence, multiplications can be computed without any multiplications
◦ Multiplications require approximately 2

3
N2 additions and

subtractions
◦ Hence, NTRUEncrypt encryption and decryption take (N2) steps,

where each step is extremely fast.

10. Speed 28∕31

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications

◦ The multiplication required by NTRUEncrypt have the form r ⋆ ℎ,
f ⋆ e, and fp ⋆ a, where r, f , and fp are ternary polynomials (+1,
0, −1)

◦ Hence, multiplications can be computed without any multiplications
◦ Multiplications require approximately 2

3
N2 additions and

subtractions
◦ Hence, NTRUEncrypt encryption and decryption take (N2) steps,

where each step is extremely fast.

10. Speed 28∕31

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ The multiplication required by NTRUEncrypt have the form r ⋆ ℎ,

f ⋆ e, and fp ⋆ a, where r, f , and fp are ternary polynomials (+1,
0, −1)

◦ Hence, multiplications can be computed without any multiplications
◦ Multiplications require approximately 2

3
N2 additions and

subtractions
◦ Hence, NTRUEncrypt encryption and decryption take (N2) steps,

where each step is extremely fast.

10. Speed 28∕31

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ The multiplication required by NTRUEncrypt have the form r ⋆ ℎ,

f ⋆ e, and fp ⋆ a, where r, f , and fp are ternary polynomials (+1,
0, −1)

◦ Hence, multiplications can be computed without any multiplications

◦ Multiplications require approximately 2
3
N2 additions and

subtractions
◦ Hence, NTRUEncrypt encryption and decryption take (N2) steps,

where each step is extremely fast.

10. Speed 28∕31

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ The multiplication required by NTRUEncrypt have the form r ⋆ ℎ,

f ⋆ e, and fp ⋆ a, where r, f , and fp are ternary polynomials (+1,
0, −1)

◦ Hence, multiplications can be computed without any multiplications
◦ Multiplications require approximately 2

3
N2 additions and

subtractions

◦ Hence, NTRUEncrypt encryption and decryption take (N2) steps,
where each step is extremely fast.

10. Speed 28∕31

How Fast is NTRUEncrypt?

◦ The most time consuming part of encryption and decryption is the
polynomial multiplication

◦ Each coefficient is essentially the dot product of two vectors
◦ A polynomial multiplication of two polynomial of length N requires

N2 multiplications
◦ The multiplication required by NTRUEncrypt have the form r ⋆ ℎ,

f ⋆ e, and fp ⋆ a, where r, f , and fp are ternary polynomials (+1,
0, −1)

◦ Hence, multiplications can be computed without any multiplications
◦ Multiplications require approximately 2

3
N2 additions and

subtractions
◦ Hence, NTRUEncrypt encryption and decryption take (N2) steps,

where each step is extremely fast.

10. Speed 28∕31

Conclusion

◦ A lattice-based public key cryptosystem
◦ Its security relies on difficulty if SVP problem
◦ Has evolved since its introduction
◦ Considered theoretically sound
◦ Unlike RSA and ECC, NTRU is not known to be vulnerable against

quantum computer based attack
◦ Its open source implementations in Java and C are available
◦ It has been standardized (IEEE Std 1363.1, X9.98)

11. Conclusion 29∕31

Thanks for your attention!

Question?

11. Conclusion 30∕31

References I

Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman, Ntru: A
ring-based public key cryptosystem, International Algorithmic
Number Theory Symposium, Springer, 1998, pp. 267–288.

Jeffrey Hoffstein, Jill Pipher, Joseph H Silverman, and Joseph H
Silverman, An introduction to mathematical cryptography, vol. 1,
Springer, 2008.

The Sage Developers, Sagemath, the Sage Mathematics Software
System (Version 9.2.0), 2021, https://www.sagemath.org.

11. Conclusion 31∕31

	Introduction
	Convolution Polynomial Rings
	Operations of Convolution Polynomial Rings
	Multiplicative Inverse
	NTRUEncrypt
	NTRUEncrypt-Overview
	NTRUEncrypt with SageMath
	Security
	NTRUEncrypt - Lattice Reduction with SageMath
	Speed
	Conclusion

