
S C I E N C E
P A S S I O N

T E C H N O L O G Y

Integer Factorization and RSA
Maria Eichlseder
Some parts based on slides by Mario Lamberger

Cryptanalysis – ST 2024

www.iaik.tugraz.at/cryptanalysis

www.iaik.tugraz.at/cryptanalysis

- Outline

' Introduction to Modern Factoring Algorithms

ó Factoring with Factor Bases
Dixon’s random squares algorithm
Quadratic sieve algorithm

% Factoring with Continued Fractions
CFRAC algorithm
Wiener’s attack on RSA

Appendix: Factoring with Elliptic Curves
Lenstra’s ECM algorithm

1 / 33

Introduction to Modern Factoring Algorithms
'

Motivation: RSA Encryption / Signatures

ø RSA Key Generation

Choose 2 large, random primes p, q
Compute public modulus n = p · q
Choose public exponent e co-prime to φ(n)
Compute private exponent d ≡ e−1 (mod φ(n))

Åø public key = (e, n) ø private key = (d, n)

Euler function:

φ(pq) = (p− 1)(q− 1)

Euler theorem:

if a, n are coprime, then

aφ(n) ≡ 1 (mod n)

If we can solve the IFP, we can recover p, q from n and thus break RSA:

® Integer Factorization Problem (IFP)

Given n ∈ N, find primes pi ∈ P and ei ∈ N such that n = pe1
1 · p

e2
2 · · · p

ek
k .

→ how large should we choose n for an attack complexity of at least, say, 2128? 2 / 33

Factoring Methods

Fastest general factoring algorithms (take with a grain of salt):

1 General number field sieve

2 Multiple polynomial quadratic sieve

3 Lenstra elliptic curve factorization

You already know two conceptual forerunners of these methods:

■ Fermat’s difference-of-squares algorithm

■ Pollard’s p− 1 method

3 / 33

Two Ways to Factor n

Difference-of-Squares factorization

Finding p, q : n = p · q ←→ finding x, y : x2 ≡ y2 (mod n)

■ Century-old idea: Fermat’s factoring algorithm (→ Crypto KU)
■ Modern sieving algorithms find x, y much more efficiently
■ This lecture: Dixon’s random squares, Quadratic sieve, CFRAC

Algebraic Group factorization

Compute in a group (mod n) and try to detect identity (mod p)

■ Example: Pollard’s p− 1 method (→ Crypto VO)
■ This lecture: Lenstra’s ECM algorithm

4 / 33

Factoring with Factor Bases
ó

Difference-of-Squares and Factor Bases

The base of modern factoring methods is a century-old idea:

Difference of Squares: x2 − y2 = (x + y)(x − y)

Find x, y with x ̸= ±y (mod n) such that

x2 ≡ y2 (mod n).

Then (x − y)(x + y) ≡ 0 (mod n), and if we are lucky,

gcd(x ± y, n) ∈ {p, q}.

® Question: How to find such a quadratic congruence?

⌢ For random x, it is unlikely that x2 mod n produces a square y2
5 / 33

Difference-of-Squares and Factor Bases

³ Observation: When is a number Y a square, i.e., Y = y2?

Consider the prime factorization Y =
∏

i p
ei
i :

Y is a square y2 iff every exponent ei is even, and we get y =
∏

i p
ei/2
i

³ Idea: Try many x2
i and combine the outputs Yi to make ei even:

x2
1 mod n = Y1 = 23 · 32 · 5
x2

2 mod n = Y2 = 2 · 5
⇓

(x1 · x2)
2 mod n = Y1 · Y2 = 24 · 32 · 52 = (22 · 3 · 5)2 = y2

6 / 33

Difference-of-Squares and Factor Bases

® Obvious problem: So now we need to factor all Yi to factor n?

³ Solution: We use a factor base B = {p1, p2, . . . , pk}
containing all prime numbers≤ B (and sometimes−1).
We only check if the Yi can be factored wrt. B.

Definition (B-smooth numbers)

n is B-smooth (B-smooth) if every prime factor p of n is≤ B (i.e., p ∈ B)

Example: n = 864 = 25 · 33 is 3-smooth

7 / 33

Dixon’s Random Squares Method

1 Select factor base of small prime numbers B = {−1, p1, p2, . . . , pk}

2 Collect relations (xi, Yi) with Yi = x2
i (mod n) and Yi =

∏
t p

eit
t

(select random xi, test if Yi is B-smooth)
(typically xi ∈ [

√
n− C,

√
n+ C], so Yi = x2

i − n is small)

3 Solve: select subset of Yi such that their product is square
(= all factors pt occur an even number of times
⇒ solving a linear equation system (mod 2): E · s ≡ 0)

4 x =
∏
xi and y =

√∏
Yi

5 Hope that gcd(x ± y, n) ∈ {p, q}

8 / 33

Factoring with Factor Bases: Example I
Factor n = 2769 using factor base B = {2, 3, 5, 7}

xi = ⌊
√
n⌋+ i 53 54 55 56 57 58 · · ·

Yi = x2
i − n 40 147 256 367 480 595 · · ·

÷ 2 23 28 25

÷ 3 3 3
÷ 5 5 5 5
÷ 7 72 7

Rest 1 1 1 367 1 17 · · ·

9 / 33

Factoring with Factor Bases: Example II
Factor n = 2769 using factor base B = {2, 3, 5, 7}

xi = ⌊
√
n⌋+ i 53 54 55 56 57 58 · · ·

Yi = x2
i − n 40 147 256 367 480 595 · · ·

÷ 2 1 0 0 1
÷ 3 0 1 0 1
÷ 5 1 0 0 1
÷ 7 0 0 0 0
Rest ✓ ✓ ✓ ✗ ✓ ✗ · · ·

Solve the linear system (mod 2)→ s = (1, 1, 0, 1) or (0, 0, 1, 0)

x =
∏
xi = 53 · 54 · 57 = 163134

y =
√∏

Yi = 2(3+5)/2 · 3(1+1)/2 · 5(1+1)/2 · 72/2 = 1680

gcd(x + y, n) = gcd(164814, 2769) = 39 (n = 3 · 13 · 71)
10 / 33

Quadratic Sieve Method

Observation: If p divides Y , i.e., x2 − n ≡ 0 mod p, then (x + p)2 − n ≡ 0 mod p.
This is useful to speed up the trial divisions by B (“Sieving”):

1 Select a factor base B = {−1, p1, p2, . . . , pk}.
For each prime pj, solve α2

j − n ≡ 0 (mod pj) (0 to 2 solutions)
(if there are 0 solutions, remove pj from factor base)

2 Set up table of xi, Yi for xi in some interval [
√
n− C,

√
n+ C].

For each αj, divide only Yi with xi = αj + k · pj for some k ∈ N by powers of pj

3 . . . (continue from step 3 of Dixon’s Random Squares)

11 / 33

Factoring with Continued Fractions
%

And now for something completely different. . .

You may or may not celebrate π day in a few days (3.14)

But did you know about π approximation day in July: 22/7
22
7

= 3.1428 . . .

is a useful approximation for

π = 3.1415 . . .
Which raises a number of questions:
® How do we approximate irrational numbers?
® Would there be any better π approximation dates to celebrate?
® And what the heck does this have to do with factorization?

12 / 33

Continued fractions to represent real numbers

Definition (Continued fraction expansion)

The continued fraction expansion of α ∈ R is

α = c0 +
1

c1 +
1

c2+
1

c3+···

= [c0; c1, c2, c3, . . .]

with c0 ∈ Z and ci ∈ N for i ≥ 1.

The values ci can be successively computed via:
c0 = ⌊α⌋ ε0 = α− c0

c1 = ⌊1/ε0⌋ ε1 = 1/ε0 − c1

c2 = ⌊1/ε1⌋ ε2 = 1/ε1 − c2
...

... 13 / 33

Continued fractions: Example

Finding the continued fraction expansion of α = 45
89 :

c0 = ⌊α⌋ =
⌊ 45

89

⌋
= 0 ε0 = α − c0 =

45
89 − 0 = 45

89

c1 =
⌊

1
ε0

⌋
=
⌊ 89

45

⌋
= 1 ε1 =

1
ε0
− c1 =

89
45 − 1 = 44

45

c2 =
⌊

1
ε1

⌋
=
⌊ 45

44

⌋
= 1 ε2 =

1
ε1
− c2 =

45
44 − 1 = 1

44

c3 =
⌊

1
ε2

⌋
=
⌊ 44

1

⌋
= 44 ε3 =

1
ε2
− c3 =

44
1 − 44 = 0

⇒ 45
89

= [0; 1, 1, 44] = 0 +
1

1 + 1
1+ 1

44

14 / 33

Continued fractions: Examples for irrational numbers

φ = [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .]
√

2 = [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . .]
√

19 = [4; 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, . . .]
e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]
π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, . . .]

π = 3 +
1

7 + 1
···
≈ 21 + 1

7

15 / 33

Continued fractions to approximate real numbers

Definition (n-th convergent)

The n-th convergent of α = [c0; c1, c2, . . .] ∈ R+ is

an
bn

= [c0; c1, c2, . . . , cn]

Convergents can be computed by recursion:
a0

b0
=
c0

1
,

a1

b1
=
c0c1 + 1
c1

, . . . ,
an
bn

=
cnan−1 + an−2

cnbn−1 + bn−2

Convergents are in a sense the “best” approximation of α:∣∣∣∣anbn − α

∣∣∣∣ < ∣∣∣ab − α
∣∣∣ for all a

b ∈ Q with a
b ̸=

an
bn and b ≤ bn.

16 / 33

Factoring with continued fractions

Remember factoring of n via factor bases:
Use a factor base B = {−1, p1, . . . , pL}

Collect squares that are B-smooth: x2
k mod n = Yk =

∏
t p

ekt
t

If Yk is small, it is more likely to factor over B successfully!

Continued fraction factoring

Let ak
bk

be the k-th convergent of
√
n. Consider the square candidates xk := ak,

so Yk := a2
k mod n = a2

k − nb2
k.

This choice of xk asserts that Yk = a2
k −
√
n2b2

k ≈ a2
k −

a2
k
b2
k
b2
k = 0 is fairly small

There’s an easy algorithm 2 to compute the expansion of
√
n accurately

17 / 33

https://en.wikipedia.org/wiki/Periodic_continued_fraction#Canonical_form_and_repetend

Factoring with continued fractions: Example I

Factor n = 9073 with the continued fraction method.

Compute convergents for
√

9073 = 95.2523 . . .:

a0
b0

= 95
1 ,

a1
b1

= 286
3 , a2

b2
= 381

4 , a3
b3

= 10192
107 , a4

b4
= 20765

218

Smallest absolute residue Yi of a2
i mod 9073:

i 0 1 2 3 4 · · ·
xi = ai 95 286 381 10192 20765 · · ·
Yi = a2

i mod n −48 139 −7 87 −27 · · ·

18 / 33

Factoring with continued fractions: Example II

Choose factor base B = {−1, 2, 3, 5, 7}

Check smoothness of the Yi and factorize to get exponents wrt. B:

Y0 = (1, 4, 1, 0, 0), Y2 = (1, 0, 0, 0, 1), Y4 = (1, 0, 3, 0, 0).

Combine to get squares x and y:

y2 = Y0 · Y4 = (−1 · 22 · 32)2 = (−36)2

x = x0 · x4 = 95 · 20765 ≡ 3834 (mod 9073)

with (−36)2 ≡ 38342 (mod 9073).

Factor n: gcd(3834 + 36, 9073) = 43 ⇒ 9073 = 43 · 211

19 / 33

Wiener’s attack on RSA

Wiener’s attack

Goal: Find private d in RSA with N = p · q.

Wiener’s Theorem: d appears in convergents of e
N if

primes q < p < 2q,
public exponent e < φ(N),
small private exponent d < 1

3
4
√
N.

RSA private key:

primes p, q, exp. d

RSA public key:

mod N = pq,

exp. e·d ≡ 1 mod φ(N)

Useful property of continued fractions

Assume α ∈ R and a, b ∈ Z, such that
∣∣α− a

b

∣∣ < 1
2b2 .

Then a
b is a convergent of the continued fraction expansion of α.

20 / 33

Wiener’s attack on RSA: Proof of Wiener’s theorem

� Idea: there exists some k ∈ Z with ed − kφ(N) = 1, so
∣∣∣ e
φ(N) −

k
d

∣∣∣ = 1
dφ(N) ;

that means, e
φ(N) approximates k

d .

� φ(N) is private, but we can approximate φ(N) by N:
|N− φ(N)| = |N− (p− 1)(q− 1)| = |p+ q− 1| < 3

√
N, so∣∣ e

N −
k
d

∣∣ = · · · ≤ 3k
d
√
N < 1

2d2 . (using k < d < 1
3

4
√
N)

³ The property now says that a
b = k

d is a convergent of α = e
N .

³ Attack: Compute continued fraction convergents of e
N and test all

candidates d for (me)d ≡ m (mod N) with somem.

21 / 33

Wiener’s attack on RSA: Example

Public: N = 9449868410449 and e = 6792605526025.
Assume that d satisfies d < 1

3
4
√
N ≈ 584.

Perform Wiener’s attack by computing convergents ai
bi

of e
N :

a0

b0
=

1
1
,

a1

b1
=

2
3
,

a2

b2
=

3
4
,

a3

b3
=

5
7
,

a4

b4
=

18
25

a5

b5
=

23
32

,
a6

b6
=

409
569

,
a7

b7
=

1659
2308

, . . .

Testing each denominator as possible d reveals d = 569.

22 / 33

Runtime comparison

Using L-Notation: Ln[α, c] = exp
[
(c+ o(1))(ln n)α(ln ln n)1−α

]
0 ≤ α ≤ 1: α = 0 is polynomial; α = 1 is exponential (wrt. input size ln n)

Dixon’s random squares Ln[1
2 , 2
√

2]
CFRAC Ln[1

2 ,
√

2]
Lenstra’s ECM Lp[1

2 ,
√

2] (p = smallest factor of n)
Quadratic sieve Ln[1

2 , 1]
General number field sieve Ln[1

3 , 1.923]

Example: 1024-bit RSA n (ca. 80-bit security):

{
Ln[1

3 , 1.923] ≈ 2101

Ln[1
2 , 1] ≈ 2122

23 / 33

Factoring records

Current records were set using the General Number Field Sieve (GNFS)
on numbers from the RSA Factoring Challenge 2 :

768-bit RSA using 2000 CPU core years set in 2009

795-bit RSA using 900 CPU core years set in 2019

829-bit RSA using 2700 CPU core years set in 2020

See https://eprint.iacr.org/2020/697

24 / 33

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
https://eprint.iacr.org/2020/697

Conclusion

Interesting links between algorithms for IFP and DLP (over Zp)

For both, the best algorithms are subexponential, but superpolynomial

³ 3072-bit keys needed for 128-bit security

Two important groups of factoring algorithms:

Ó Difference-of-squares factorization using factor bases
(Dixon’s random squares, Quadratic sieve, CFRAC, GNFS)

Ó Algebraic group factorization
(Pollard p− 1, Lenstra’s ECM)

25 / 33

Questions you should be able to answer

1. Explain factoring with factor bases. What is the underlying idea? How are
the relations collected in Dixon’s Random Square algorithm? How are the
relations combined to get a factorization of N?

2. Explain the Quadratic Sieve algorithm. What is the main difference
compared to Dixon’s algorithm?

3. What is a continued fraction of a number? What is the n-th convergent of a
number? How can continued fractions be applied to factoring?

4. Explain the idea of Wiener’s attack on RSA.

26 / 33

Appendix: Factoring with Elliptic Curves
#

Pollard’s p− 1 Method, Revisited

Recall Pollard’s p− 1 method to factor n = p · q:

1 Pick a ∈ Z∗
n and k ∈ N, e.g., k = B! for bound B

2 If k is such that p− 1 | k and p ̸ | a, then

ak ≡ 1 (mod p).

3 Consequently, p divides both n and ak − 1. If

d = gcd(ak − 1, n) ̸= 1, n

Success! Else, adapt B (larger if d = 1, smaller if d = n)

Fermat’s theorem:

for a ∈ group G,

a|G| = 1

27 / 33

Using different groups

Pollard’s p− 1 operates in subgroup mod p (of structure mod n).
It only works if group order

∣∣Z∗
p

∣∣ = p− 1 is smooth.

Idea: Z∗
p isn’t the only group we know→ Elliptic Curve Group!

x ∈ Z17••••••••••••••••
Modular group Z∗

17
(order 16)

y ∈ Z17

x ∈ Z17
••

•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

Elliptic curve group E(Z17)
y2 = x3 + x + 1 (order 18)

28 / 33

Elliptic Curve Group
Elliptic curve

= solutions (x, y) of equation in Weierstrass Form

y2 = x3 + ax + b

where ∆ = −16(4a3 + 27b2) ̸= 0.

Elliptic Curve Group

Neutral elementO: Special point “(0,∞)”
O

Addition P+ Q: Chord rule •P •Q •

•P+Q
29 / 33

How many points are in an EC group?

Order of the group E

The number of points (x, y) on E (incl.O) is its order |E|.

Hasse’s Theorem

The order of E(Zp) is |E| = p+ 1− t for some |t| ≤ 2√p.

In other words: |E(Zp)| ≈
∣∣Z∗

p

∣∣, but exact value depends on curve!
By trying different curve equations, we get different orders!
This gives us many “candidate orders” that might be smooth.

30 / 33

Addition in E(Zp)

Points P =

(
xP
yP

)
, Q =

(
xQ
yQ

)
, R =

(
xR
yR

)
•P •Q •

•P+Q = R

P+ Q =



Q if P = O
P if Q = O
O if P = −Q (xP = xQ, yP = −yQ)(

(
3x2
P+a

2yP
)2 − 2xP

(
3x2
P+a

2yP
)(xP − xR)− yP

)
if P = Q (xP = xQ, yP = YQ)(

(yQ−yPxQ−xP)
2 − xP − xQ

(yQ−yPxQ−xP)(xP − xR)− yP

)
else

Addition involves computing inverses u
v (mod p) (=Euclid)!

31 / 33

Addition in E(Zn), n = p · q

Idea: Simply perform the same computations mod n (if possible).

What can go wrong when computing u
v (mod n)?

If gcd(v, n) = 1: everything ok

If gcd(v, n) = n (and gcd(u, n) = 1): Means P = −Q, resultO

If gcd(v, n) ̸= n, 1: Addition failed, but. . .

We’ve found a factor of n!

32 / 33

Lenstra’s Elliptic Curve Method for Factorization

Repeat until successful:

1 Pick random curve E(Zn) : y2 = x3 + ax + b, point P = (x0, y0)
Hint: First pick x0, y0, a ∈ Zn, compute b = y2

0 − x3
0 − ax0 (mod n)

2 Pick number k with many small prime factors, e.g., k = B!

3 Compute k · P = P+ P+ . . .+ P
Hint: Step by step: 2P, then 3(2P), then 4(3!P), . . .

If all computations successful. . .bad luck, next curve
If intermediate resultO. . .bad luck, next curve
If addition fails with gcd(v, n) = p ̸= n, 1: Success!

33 / 33

Bibliography

[Dix81] John D. Dixon. Asymptotically Fast Factorization of Integers. Mathematics of
Computation 36.153 (1981), pp. 255–260. DOI: 10.2307/2007743.

[Len87] H. W. Lenstra. Factoring Integers with Elliptic Curves. Annals of Mathematics 126.3
(1987), pp. 649–673. ISSN: 0003486X. DOI: 10.2307/1971363.

[MB75] Michael A. Morrison and John Brillhart. A Method of Factoring and the
Factorization of F7. Mathematics of Computation 29.129 (1975), pp. 183–205. DOI:
10.2307/2005475.

[Pom84] Carl Pomerance. The Quadratic Sieve Factoring Algorithm. EUROCRYPT. Vol. 209.
LNCS. Springer, 1984, pp. 169–182. DOI: 10.1007/3-540-39757-4_17.

[Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions
on Information Theory 36.3 (1990), pp. 553–558. DOI: 10.1109/18.54902.

https://doi.org/10.2307/2007743
https://doi.org/10.2307/1971363
https://doi.org/10.2307/2005475
https://doi.org/10.1007/3-540-39757-4_17
https://doi.org/10.1109/18.54902

	Introduction to Modern Factoring Algorithms
	
	Factoring with Factor Bases
	
	Dixon's random squares algorithm
	Quadratic sieve algorithm

	Factoring with Continued Fractions
	
	Cfrac algorithm
	Wiener's attack on RSA

	Summary
	Appendix: Factoring with Elliptic Curves
	
	Lenstra's ECM algorithm

