

Integer Factorization and RSA

Maria Eichlseder

Some parts based on slides by Mario Lamberger

Cryptanalysis – ST 2024

= Outline

- Introduction to Modern Factoring Algorithms
- Factoring with Factor Bases
 - Dixon's random squares algorithm
 - Quadratic sieve algorithm
- **%** Factoring with Continued Fractions
 - CFRAC algorithm
 - Wiener's attack on RSA
- Appendix: Factoring with Elliptic Curves
 - Lenstra's ECM algorithm

Introduction to Modern Factoring Algorithms

Motivation: RSA Encryption / Signatures

RSA Key Generation

- Choose 2 large, random primes p, q
- Compute public modulus $n = p \cdot a$
- Choose public exponent *e* co-prime to $\varphi(n)$
- Compute private exponent $d \equiv e^{-1} \pmod{\varphi(n)}$

public key =
$$(e, n)$$

 \mathbf{P} private key = (d, n)

If we can solve the IFP, we can recover p, q from n and thus break RSA:

1 Integer Factorization Problem (IFP)

Given $n \in \mathbb{N}$, find primes $p_i \in \mathbb{P}$ and $e_i \in \mathbb{N}$ such that $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$.

 \rightarrow how large should we choose n for an attack complexity of at least, say, 2^{128} ?

Euler function:
$$\varphi(pq) = (p-1)(q-1)$$

Euler theorem:

if a, n are coprime, then $a^{\varphi(n)} \equiv 1 \pmod{n}$

Factoring Methods

Fastest general factoring algorithms (take with a grain of salt):

- 1 General number field sieve
- 2 Multiple polynomial quadratic sieve
- Lenstra elliptic curve factorization

You already know two conceptual forerunners of these methods:

- Fermat's difference-of-squares algorithm
- Pollard's p-1 method

Two Ways to Factor *n*

Difference-of-Squares factorization

Finding $p, q : n = p \cdot q \longleftrightarrow \text{finding } x, y : x^2 \equiv y^2 \pmod{n}$

- Century-old idea: Fermat's factoring algorithm (→ Crypto KU)
- Modern sieving algorithms find *x*, *y* much more efficiently
- This lecture: Dixon's random squares, Quadratic sieve, CFRAC

Algebraic Group factorization

Compute in a group \pmod{n} and try to detect identity \pmod{p}

- **Example:** Pollard's p-1 method (\rightarrow Crypto VO)
- This lecture: Lenstra's ECM algorithm

Factoring with Factor Bases

Difference-of-Squares and Factor Bases

The base of modern factoring methods is a century-old idea:

Difference of Squares:
$$x^2 - y^2 = (x + y)(x - y)$$

Find x, y with $x \neq \pm y \pmod{n}$ such that

$$x^2 \equiv y^2 \pmod{n}$$
.

Then $(x - y)(x + y) \equiv 0 \pmod{n}$, and if we are lucky,

$$\gcd(x \pm y, n) \in \{p, q\}.$$

- Question: How to find such a quadratic congruence?
- \bigcirc For random x, it is unlikely that $x^2 \mod n$ produces a square y^2

Difference-of-Squares and Factor Bases

Observation: When is a number Y a square, i.e., $Y = y^2$?

Consider the prime factorization $Y = \prod_i p_i^{e_i}$:

Y is a square y^2 iff every exponent e_i is even, and we get $y = \prod_i p_i^{e_i/2}$

Outputs Idea: Try many x_i^2 and combine the outputs Y_i to make e_i even:

$$x_1^2 \mod n = Y_1 = 2^3 \cdot 3^2 \cdot 5$$

$$x_2^2 \mod n = Y_2 = 2 \cdot 5$$

$$(x_1 \cdot x_2)^2 \mod n = Y_1 \cdot Y_2 = 2^4 \cdot 3^2 \cdot 5^2 = (2^2 \cdot 3 \cdot 5)^2 = y^2$$

Difference-of-Squares and Factor Bases

- Obvious problem: So now we need to factor all Y_i to factor n?
- Solution: We use a factor base $\mathcal{B} = \{p_1, p_2, \dots, p_k\}$ containing all prime numbers $\leq B$ (and sometimes -1). We only check if the Y_i can be factored wrt. \mathcal{B} .

Definition (B-smooth numbers)

n is *B*-smooth (\mathcal{B} -smooth) if every prime factor *p* of *n* is $\leq B$ (i.e., $p \in \mathcal{B}$)

Example: $n = 864 = 2^5 \cdot 3^3$ is 3-smooth

Dixon's Random Squares Method

- 1 Select factor base of small prime numbers $\mathcal{B} = \{-1, p_1, p_2, \dots, p_k\}$
- 2 Collect relations (x_i, Y_i) with $Y_i = x_i^2 \pmod{n}$ and $Y_i = \prod_t p_t^{e_{it}}$ (select random x_i , test if Y_i is \mathcal{B} -smooth) (typically $x_i \in [\sqrt{n} C, \sqrt{n} + C]$, so $Y_i = x_i^2 n$ is small)
- Solve: select subset of Y_i such that their product is square (= all factors p_t occur an even number of times \Rightarrow solving a linear equation system (mod 2): $\mathbf{E} \cdot \mathbf{s} \equiv \mathbf{0}$)
- $4 x = \prod x_i \text{ and } y = \sqrt{\prod Y_i}$
- $5 \quad \mathsf{Hope that } \gcd(x \pm y, n) \in \{p, q\}$

Factoring with Factor Bases: Example I

Factor n = 2769 using factor base $\mathcal{B} = \{2, 3, 5, 7\}$

$x_i = \lfloor \sqrt{n} \rfloor + i$	53	54	55	56	57	58	• • •
$Y_i = x_i^2 - n$	40	147	256	367	480	595	
÷ 2	2 ³		2 ⁸		2 ⁵		
÷ 3		3			3		
÷ 5	5				5	5	
÷ 7		7 ²				7	
Rest	1	1	1	367	1	17	• • •

Factoring with Factor Bases: Example II

Factor n = 2769 using factor base $\mathcal{B} = \{2, 3, 5, 7\}$

$x_i = \lfloor \sqrt{n} \rfloor + i$	53	54	55	56	57	58	• • •
$Y_i = x_i^2 - n$	40	147	256	367	480	595	• • •
÷2	1	0	0		1		
÷3	0	1	0		1		
÷5	1	0	0		1		
÷ 7	0	0	0		0		
Rest	1	1	1	X	✓	X	• • •

- Solve the linear system (mod 2) \rightarrow **s** = (1, 1, 0, 1) or (0, 0, 1, 0)
- $x = \prod x_i = 53 \cdot 54 \cdot 57 = 163134$ $y = \sqrt{\prod Y_i} = 2^{(3+5)/2} \cdot 3^{(1+1)/2} \cdot 5^{(1+1)/2} \cdot 7^{2/2} = 1680$
- $\gcd(x+y,n)=\gcd(164814,2769)=39$

Quadratic Sieve Method

Observation: If p divides Y, i.e., $x^2 - n \equiv 0 \mod p$, then $(x + p)^2 - n \equiv 0 \mod p$. This is useful to speed up the trial divisions by \mathcal{B} ("Sieving"):

- 1 Select a factor base $\mathcal{B} = \{-1, p_1, p_2, \dots, p_k\}$. For each prime p_j , solve $\underline{\alpha_j^2 - n} \equiv 0 \pmod{p_j}$ (0 to 2 solutions) (if there are 0 solutions, remove p_j from factor base)
- 2 Set up table of x_i , Y_i for x_i in some interval $[\sqrt{n} C, \sqrt{n} + C]$. For each α_j , divide only Y_i with $x_i = \alpha_j + k \cdot p_j$ for some $k \in \mathbb{N}$ by powers of p_i
- 3 ... (continue from step 3 of Dixon's Random Squares)

Factoring with Continued Fractions

And now for something completely different...

You may or may not celebrate π day in a few days (3.14)

But did you know about π approximation day in July: 22/7

$$\frac{22}{7} = 3.1428...$$

is a useful approximation for

$$\pi = 3.1415...$$

Which raises a number of questions:

- How do we approximate irrational numbers?
- **②** Would there be any better π approximation dates to celebrate?
- And what the heck does this have to do with factorization?

Continued fractions to represent real numbers

Definition (Continued fraction expansion)

The continued fraction expansion of $\alpha \in \mathbb{R}$ is

$$\alpha = c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \frac{1}{c_2 + \cdots}}} = [c_0; c_1, c_2, c_3, \ldots]$$

with $c_0 \in \mathbb{Z}$ and $c_i \in \mathbb{N}$ for i > 1.

The values c_i can be successively computed via:

$$c_0 = \lfloor \alpha \rfloor \qquad \qquad \varepsilon_0 = \alpha - c_0$$

$$c_1 = \lfloor 1/\varepsilon_0 \rfloor \qquad \qquad \varepsilon_1 = 1/\varepsilon_0 - c_1$$

$$c_2 = \lfloor 1/\varepsilon_1 \rfloor \qquad \qquad \varepsilon_2 = 1/\varepsilon_1 - c_2$$

$$\vdots \qquad \qquad \vdots$$

Continued fractions: Example

Finding the continued fraction expansion of $\alpha = \frac{45}{89}$:

$$c_{0} = \lfloor \alpha \rfloor = \lfloor \frac{45}{89} \rfloor = 0 \qquad \qquad \varepsilon_{0} = \alpha - c_{0} = \frac{45}{89} - 0 = \frac{45}{89}$$

$$c_{1} = \lfloor \frac{1}{\varepsilon_{0}} \rfloor = \lfloor \frac{89}{45} \rfloor = 1 \qquad \qquad \varepsilon_{1} = \frac{1}{\varepsilon_{0}} - c_{1} = \frac{89}{45} - 1 = \frac{44}{45}$$

$$c_{2} = \lfloor \frac{1}{\varepsilon_{1}} \rfloor = \lfloor \frac{45}{44} \rfloor = 1 \qquad \qquad \varepsilon_{2} = \frac{1}{\varepsilon_{1}} - c_{2} = \frac{45}{44} - 1 = \frac{1}{44}$$

$$c_{3} = \lfloor \frac{1}{\varepsilon_{2}} \rfloor = \lfloor \frac{44}{1} \rfloor = 44 \qquad \qquad \varepsilon_{3} = \frac{1}{\varepsilon_{2}} - c_{3} = \frac{44}{1} - 44 = 0$$

$$\Rightarrow \qquad \frac{45}{89} = [0; 1, 1, 44] = 0 + \frac{1}{1 + \frac{1}{1 + \frac{1}{12}}}$$

Continued fractions: Examples for irrational numbers

$$\varphi = [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots]$$

$$\sqrt{2} = [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, \dots]$$

$$\sqrt{19} = [4; 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, \dots]$$

$$e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \dots]$$

$$\pi = [3; 7] 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, \dots]$$

$$\pi = 3 + \frac{1}{7 + \frac{1}{2}} \approx \frac{21 + 1}{7}$$

Continued fractions to approximate real numbers

Definition (*n*-th convergent)

The *n*-th convergent of $\alpha = [c_0; c_1, c_2, \ldots] \in \mathbb{R}^+$ is

$$\frac{a_n}{b_n}=[c_0;c_1,c_2,\ldots,c_n]$$

Convergents can be computed by recursion:

$$\frac{a_0}{b_0} = \frac{c_0}{1}, \quad \frac{a_1}{b_1} = \frac{c_0c_1+1}{c_1}, \quad \dots, \quad \frac{a_n}{b_n} = \frac{c_na_{n-1}+a_{n-2}}{c_nb_{n-1}+b_{n-2}}$$

• Convergents are in a sense the "best" approximation of α :

$$\left| \frac{a_n}{b_n} - \alpha \right| < \left| \frac{a}{b} - \alpha \right|$$
 for all $\frac{a}{b} \in \mathbb{Q}$ with $\frac{a}{b} \neq \frac{a_n}{b_n}$ and $b \leq b_n$.

Factoring with continued fractions

Remember factoring of *n* via factor bases:

- Use a factor base $\mathcal{B} = \{-1, p_1, \dots, p_L\}$
- Collect squares that are \mathcal{B} -smooth: $x_k^2 \mod n = Y_k = \prod_t p_t^{e_{kt}}$
- If Y_k is small, it is more likely to factor over \mathcal{B} successfully!

Continued fraction factoring

Let $\frac{a_k}{b_k}$ be the k-th convergent of \sqrt{n} . Consider the square candidates $x_k := a_k$, so $Y_k := a_k^2 \mod n = a_k^2 - nb_k^2$.

- This choice of x_k asserts that $Y_k=a_k^2-\sqrt{n}^2b_k^2pprox a_k^2-rac{a_k^2}{b_k^2}b_k^2=0$ is fairly small
- There's an easy algorithm \checkmark to compute the expansion of \sqrt{n} accurately

Factoring with continued fractions: Example I

Factor n = 9073 with the continued fraction method.

• Compute convergents for $\sqrt{9073} = 95.2523...$:

$$\frac{a_0}{b_0} = \frac{95}{1}, \quad \frac{a_1}{b_1} = \frac{286}{3}, \quad \frac{a_2}{b_2} = \frac{381}{4}, \quad \frac{a_3}{b_3} = \frac{10192}{107}, \quad \frac{a_4}{b_4} = \frac{20765}{218}$$

• Smallest absolute residue Y_i of $a_i^2 \mod 9073$:

i	0	1	2	3	4	
$x_i = a_i$	95	286	381	10192	20765	
$Y_i = a_i^2 \mod n$	-48	139	-7	87	-27	

Factoring with continued fractions: Example II

- Choose factor base $\mathcal{B} = \{-1, 2, 3, 5, 7\}$
- Check smoothness of the Y_i and factorize to get exponents wrt. \mathcal{B} :

$$Y_0 = (1, 4, 1, 0, 0), \quad Y_2 = (1, 0, 0, 0, 1), \quad Y_4 = (1, 0, 3, 0, 0).$$

• Combine to get squares x and y:

$$y^2 = Y_0 \cdot Y_4 = (-1 \cdot 2^2 \cdot 3^2)^2 = (-36)^2$$

 $x = x_0 \cdot x_4 = 95 \cdot 20765 \equiv 3834 \pmod{9073}$

with $(-36)^2 \equiv 3834^2 \pmod{9073}$.

■ **Factor** $n: \gcd(3834 + 36,9073) = 43$ \Rightarrow 9073 = 43 · 211

Wiener's attack on RSA

Wiener's attack

- Goal: Find private d in RSA with $N = p \cdot q$.
- Wiener's Theorem: d appears in convergents of $\frac{e}{N}$ if
 - primes q ,
 - public exponent $e < \varphi(N)$,
 - small private exponent $d < \frac{1}{3}\sqrt[4]{N}$.

RSA private key: primes p, q, exp. d

RSA public key:

mod N = pq, $exp. e \cdot d \equiv 1 \mod \varphi(N)$

Useful property of continued fractions

Assume $\alpha \in \mathbb{R}$ and $a, b \in \mathbb{Z}$, such that $\left|\alpha - \frac{a}{b}\right| < \frac{1}{2b^2}$. Then $\frac{a}{b}$ is a convergent of the continued fraction expansion of α .

Wiener's attack on RSA: Proof of Wiener's theorem

- **Q** Idea: there exists some $k \in \mathbb{Z}$ with $ed k\varphi(N) = 1$, so $\left| \frac{e}{\varphi(N)} \frac{k}{d} \right| = \frac{1}{d\varphi(N)}$; that means, $\frac{e}{\varphi(N)}$ approximates $\frac{k}{d}$.
- The property now says that $\frac{a}{b} = \frac{k}{d}$ is a convergent of $\alpha = \frac{e}{N}$.
- Attack: Compute continued fraction convergents of $\frac{e}{N}$ and test all candidates d for $(m^e)^d \equiv m \pmod{N}$ with some m.

Wiener's attack on RSA: Example

- Public: N = 9449868410449 and e = 6792605526025. Assume that d satisfies $d < \frac{1}{3} \sqrt[4]{N} \approx 584$.
- Perform Wiener's attack by computing convergents $\frac{a_i}{b_i}$ of $\frac{e}{N}$:

$$\frac{a_0}{b_0} = \frac{1}{1}, \qquad \frac{a_1}{b_1} = \frac{2}{3}, \qquad \frac{a_2}{b_2} = \frac{3}{4}, \qquad \frac{a_3}{b_3} = \frac{5}{7}, \\
\frac{a_4}{b_4} = \frac{18}{25} \qquad \frac{a_5}{b_5} = \frac{23}{32}, \qquad \frac{a_6}{b_6} = \frac{409}{569}, \qquad \frac{a_7}{b_7} = \frac{1659}{2308}, \dots$$

Testing each denominator as possible d reveals d = 569.

Runtime comparison

Using *L*-Notation:
$$L_n[\alpha, c] = \exp\left[(c + o(1))(\ln n)^{\alpha}(\ln \ln n)^{1-\alpha}\right]$$

 $0 \le \alpha \le 1$: $\alpha = 0$ is polynomial; $\alpha = 1$ is exponential (wrt. input size $\ln n$)

- Dixon's random squares $L_n[\frac{1}{2}, 2\sqrt{2}]$
- CFRAC $L_n[\frac{1}{2}, \sqrt{2}]$
- Lenstra's ECM $L_p[\frac{1}{2}, \sqrt{2}]$ (p = smallest factor of n)
- Quadratic sieve $L_n[\frac{1}{2},1]$
- General number field sieve $L_n[\frac{1}{3}, 1.923]$

Example: 1024-bit RSA n (ca. 80-bit security): $\begin{cases} L_n[\frac{1}{3}, 1.923] \approx 2^{101} \\ L_n[\frac{1}{2}, 1] \approx 2^{122} \end{cases}$

Factoring records

Current records were set using the General Number Field Sieve (GNFS) on numbers from the RSA Factoring Challenge ☑:

- 768-bit RSA using 2000 CPU core years set in 2009
- 795-bit RSA using 900 CPU core years set in 2019
- 829-bit RSA using 2700 CPU core years set in 2020
- See https://eprint.iacr.org/2020/697

Conclusion

- Interesting links between algorithms for IFP and DLP (over \mathbb{Z}_p)
- For both, the best algorithms are subexponential, but superpolynomial
 - **②** 3072-bit keys needed for 128-bit security

- Two important groups of factoring algorithms:
 - Difference-of-squares factorization using factor bases (Dixon's random squares, Quadratic sieve, CFRAC, GNFS)
 - ♣ Algebraic group factorization (Pollard p - 1, Lenstra's ECM)

Questions you should be able to answer

- 1. Explain factoring with factor bases. What is the underlying idea? How are the relations collected in Dixon's Random Square algorithm? How are the relations combined to get a factorization of *N*?
- 2. Explain the Quadratic Sieve algorithm. What is the main difference compared to Dixon's algorithm?
- 3. What is a continued fraction of a number? What is the *n*-th convergent of a number? How can continued fractions be applied to factoring?
- 4. Explain the idea of Wiener's attack on RSA.

Appendix: Factoring with Elliptic Curves

Pollard's p-1 Method, Revisited

Recall Pollard's p-1 method to factor $n=p\cdot q$:

- 1 Pick $a \in \mathbb{Z}_n^*$ and $k \in \mathbb{N}$, e.g., k = B! for bound B
- 2 If k is such that $p-1 \mid k$ and $p \not\mid a$, then

$$a^k \equiv 1 \pmod{p}$$
.

3 Consequently, p divides both n and $a^k - 1$. If

$$d = \gcd(a^k - 1, n) \neq 1, n$$

Success! Else, adapt B (larger if d = 1, smaller if d = n)

Fermat's theorem: for $a \in \text{group } G$,

$$a^{|G|}=1$$

Using different groups

Pollard's p-1 operates in subgroup $\operatorname{mod} p$ (of structure $\operatorname{mod} n$). It only works if group order $\left|\mathbb{Z}_p^*\right|=p-1$ is smooth.

Idea: \mathbb{Z}_p^* isn't the only group we know \to Elliptic Curve Group!

Elliptic Curve Group

Elliptic curve

= solutions (x, y) of equation in Weierstrass Form

$$y^2 = x^3 + ax + b$$

where
$$\Delta = -16(4a^3 + 27b^2) \neq 0$$
.

Elliptic Curve Group

Neutral element \mathcal{O} : Special point " $(0, \infty)$ "

Addition P + Q: Chord rule

How many points are in an EC group?

Order of the group *E*

The number of points (x, y) on E (incl. \mathcal{O}) is its order |E|.

Hasse's Theorem

The order of $E(\mathbb{Z}_p)$ is |E| = p + 1 - t for some $|t| \le 2\sqrt{p}$.

In other words: $|E(\mathbb{Z}_p)| \approx |\mathbb{Z}_p^*|$, but exact value depends on curve! By trying different curve equations, we get different orders! This gives us many "candidate orders" that might be smooth.

Addition in $E(\mathbb{Z}_p)$

Points
$$P = \begin{pmatrix} x_P \\ y_P \end{pmatrix}$$
, $Q = \begin{pmatrix} x_Q \\ y_Q \end{pmatrix}$, $R = \begin{pmatrix} x_R \\ y_R \end{pmatrix}$

$$P + Q = \begin{cases} Q & \text{if } P = \mathcal{O} \\ P & \text{if } Q = \mathcal{O} \\ \mathcal{O} & \text{if } P = -Q \ (x_P = x_Q, y_P = -y_Q) \end{cases}$$

$$\begin{pmatrix} \left(\frac{3x_P^2 + a}{2y_P}\right)^2 - 2x_P \\ \left(\frac{3x_P^2 + a}{2y_P}\right)(x_P - x_R) - y_P \end{pmatrix} & \text{if } P = Q \ (x_P = x_Q, y_P = y_Q) \\ \left(\frac{y_Q - y_P}{x_Q - x_P}\right)^2 - x_P - x_Q \\ \left(\frac{y_Q - y_P}{x_Q - x_P}\right)(x_P - x_R) - y_P \end{pmatrix} & \text{else} \end{cases}$$

Addition involves computing inverses $\frac{u}{v} \pmod{p}$ (=Euclid)!

Addition in $E(\mathbb{Z}_n)$, $n = p \cdot q$

Idea: Simply perform the same computations mod n (if possible).

What can go wrong when computing $\frac{u}{v} \pmod{n}$?

- If gcd(v, n) = 1: everything ok
- If gcd(v, n) = n (and gcd(u, n) = 1): Means P = -Q, result \mathcal{O}
- If $gcd(v, n) \neq n, 1$: Addition failed, but...

We've found a factor of *n*!

Lenstra's Elliptic Curve Method for Factorization

Repeat until successful:

- Pick random curve $E(\mathbb{Z}_n)$: $y^2 = x^3 + ax + b$, point $P = (x_0, y_0)$ Hint: First pick $x_0, y_0, a \in \mathbb{Z}_n$, compute $b = y_0^2 - x_0^3 - ax_0 \pmod{n}$
- 2 Pick number k with many small prime factors, e.g., k = B!
- 3 Compute $k \cdot P = P + P + ... + P$ Hint: Step by step: 2P, then 3(2P), then 4(3!P), ...
 - If all computations successful...bad luck, next curve
 - If intermediate result *O*...bad luck, next curve
 - If addition fails with $gcd(v, n) = p \neq n, 1$: Success!

Bibliography

- [Dix81] John D. Dixon. Asymptotically Fast Factorization of Integers. Mathematics of Computation 36.153 (1981), pp. 255–260. DOI: 10.2307/2007743.
- [Len87] H. W. Lenstra. Factoring Integers with Elliptic Curves. Annals of Mathematics 126.3 (1987), pp. 649–673. ISSN: 0003486X. DOI: 10.2307/1971363.
- [MB75] Michael A. Morrison and John Brillhart. A Method of Factoring and the Factorization of F_7 . Mathematics of Computation 29.129 (1975), pp. 183–205. DOI: 10.2307/2005475.
- [Pom84] Carl Pomerance. The Quadratic Sieve Factoring Algorithm. EUROCRYPT. Vol. 209. LNCS. Springer, 1984, pp. 169–182. DOI: 10.1007/3-540-39757-4_17.
- [Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36.3 (1990), pp. 553–558. DOI: 10.1109/18.54902.